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Workshop on Rough Surface Scattering and Related Phenomena 
Napa Valley Lodge, Yountville, California 

June 23-June 28, 1996 

Monday, June 24,1996 

Session I.    Chair: A. A. Maradudin 

8:50 AM    Welcoming Comments 

9:00 AM    G. S. Brown (Virginia Polytechnic Institute) Recent Surface Scattering 
Research at the Electromagnetic Interactions Laboratory 

10:00 AM P. Tran (Naval Air Warfare Center Weapons Division) The Calculation of the 
Scattering of Electromagnetic Waves from a Two-Dimensional Surface Using 
the method of Ordered Multiple Interaction 

11:00 AM    W. Chew (University of Illinois, Urbana-Champaign) Fast Simulation of 
Electrogmagnetic Scattering from Two-Dimensional Random Rough Surfaces 

12:00 PM     K. A. OT>onnell (Georgia Institute of Technology) Observations of Scattering 
Effects due to Plasmon Polariton Excitation on Rough Metal Surfaces 

1:00   PM     LUNCH 

Session II.   Chair: A. Ishimaru 

2:30 PM     J. DeSanto (Colorado School of Mines) Electromagnetic Integral Equations 
for Rough Surface Scattering 

3:30 PM     H. Ogura (Kyoto University)  Backscattering Enhancement and Localization 
Effect in the Scattering From a Random Rough Metal Surface - Stochastic 
Functional Approach 

4:30 PM     A. A. Maradudin (University of California, Irvine) X-Ray Scattering From 
a Randomly Rough Surface 

5:30 PM     V. Freilikher (Bar-Ilan University) Coherent Effects in Closed Systems 
with Rough Boundaries 
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Session III.   Chair: M. Cheney 

9:00  AM    Y. Kuga (University of Washington)  Detection of a Buried Target in a Random 
Medium Using Angular Correlation Function 

10:00 AM    A. R. McGurn (Western Michigan University) Speckle Correlations and 
Inverse Scattering Methods for 1-d and 2-d Randomly Rough Metal Surfaces 

11:00 AM    D. Maystre (Universite D'Aix-Marseilles I) The inverse scattering problem for 
rough surfaces from both deterministic and statistical points of view 



12:00 PM    A. Ishimaru (University of Washington) Angular, Frequency, Time and 
Polarization Correlations of Waves Scattered by Rough Surfaces and 
Applications to Surface Profile Determination and Object Detection 
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Session IV.   Chair: H. Ogura 

2:30 PM     Zu-Han Gu (Surface Optics Corporation) Angular Correlation Function of 
Speckle Patterns Scattered from a One-dimensional Rough Dielectric Film on 
a Glass Substrate 

3:30  PM    T. A. Leskova (Institute of Spectroscopy, Russia) Multiple Scattering Effects 
in the Second Harmonic Generation of Light in Reflection from a Randomly 
Rough Metal Surface 

Brief Presentations. Chair: W. Chew 

4:30 PM     S. Mainguy (Centre d'Etudes Scientifiques et Techniques d'Aquitaine) 
Scattering of Infrared Waves by Two-Dimensional Randomly Rough Dielectric 
Surfaces: Comparison Between BRDF Measurements and Numerical 
Simulations 

4:55 PM     E. Chaikina (Centro de Investigation Cientifica y Educacion Superior de 
Ensenada) Diffuse Scattering from One-Dimensional Randomly Rough Metal 
Surfaces 

5:20 PM     A. Shchegrov (University of California, Irvine) Resonant Scattering of 
Electromagnetic Waves From a Rectangular Groove on a Perfectly Conducting 
Surface 

5:45 PM     E. Kanzieper (Bar-Ilan University) Statistics ofEigenmodes in Microwave 
Cavities with Rough Boundaries 

Wednesday, June 26,1996 

Session V.   Chair: D. Maystre 

9:00 AM    M. Vaez-Iravani (Tencor Instruments) Near Field Microscopy of Rough 
Surfaces 

10:00 AM    E. R. Mendez (Instituto de Ciencia de Materiales de Madrid, CSIC) Numerical 
Study of a Scatter-Probe Near Field Optical Microscope 

11:00 AM    J.-J. Greffet (Ecole Centrale Paris, CNRS) Recent Progress in the Analysis of 
Image Formation in Near-Field Optical Microscopy 

12:00 PM    M. Nieto-Vesperinas (Universidad Autonoma) Light Scattering from Bodies 
either in Front or Behind Corrugated Interfaces 



1:00 PM    Lunch 

6:00 PM   Reception 
7:15 PM  Banquet 

Thursday, June 27,1996 

Session V.   Chair: J. De Santo 

9:00 AM     C.J.R.Sheppard (University of Sydney) Scattering and Imaging of Rough 
Surfaces 

10:00 AM    J. Sylvester (University of Washington) Nonlinear and Linear Inverse 
Scattering 

11:00 AM    M. Cheney (Rensselaer Polytechnic Institute) Inverse Problems for a Perturbed 
Dissipative Half-Space 

12:00 PM     A- Yodh (University of Pennsylvania) Imaging in Optical Turbid Media with 
Diffuse Waves 

1:00 PM    Lunch 

Brief Presentations.   Chair: M. Nieto-Vesperinas 

2:30 PM    A. Madrazo (Instituto de Ciencia de Materiales) Electromagnetic Wave 
Scattering from a Body Buried Near a Random Rough Surface 

2:55 PM     B. Capbern (Centre d'Etudes Scientißques d'Aquüaine) Scattering of Infrared 
Radiation by Heterogeneous Medium under a Rough Surface 

3:20 PM     I. Novikov (University of California, Irvine) The Stokes Matrix in Conical 
Scattering From One-Dimensional Perfectly Conducting Random Surfaces 

3:45 PM     Canonical Problems- 
K. A. OTJonnell and E. R. Mendez 

4:10 PM     W. A. Flood - Closing Remarks 
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Recent Surface Scattering Research at the 
ElectroMagnetic Interactions Laboratory 

Gary S. Brown 
ElectroMagnetic Interactions Laboratory 

Bradley Department of Electrical Engineering 
Virginia Polytechnic Institute & State University 

Blacksburg, VA 24061-0111 

The purpose of this presentation is to provide a brief update on some of the major 
surface scattering research that is being conducted by the ElectroMagnetic Interactions 
Laboratory (EMIL) of the Bradley Department of Electrical Engineering, Virginia 
Polytechnic Institute and State University. This material is specifically intended to high- 
light two of the most important programs of the EMIL; one deals with numerically efficient 
means for computing scattering from rough surfaces while the second is a multifaceted 
approach to understanding subsurface scattering. 

Recently, researchers at EMDL [1] and Logicon-RDA [2] have developed slightly 
different versions of a new way to deal numerically with scattering from one-dimensional, 
rough, perfect electric conducting extended surface. From a physicist's point of view, the 
new approach is based on rearranging the integral equation for the electric current induced 
on the surface by the incident field in such a way that the new Born term contains a good 
deal of resummation of multiple scattering taking place on the surface. This same procedure 
is viewed by the mathematician as a preconditioning process. Regardless of the name one 
associates with the recasting process, the most important point is that it provides a new 
integral equation whose Born term is easily computed without the need to invert large 
matrices, its computation goes as NA2 rather than NA3, and higher iterates can be as easily 
computed as the Bom term. N is the number of points along the surface where the current 
is sampled. It has also been previously shown that the Born term, while not error free, 
contains an element of error which is usually not large and is randomly located on the 
rough surface. Consequently, when averages are taken to find, for example, the incoherent 
scattered power, the random location of the errors on the surface tends to reduce the effect 
of the errors on the scattered power. This leads to a robustness of the Born term that is 
rather surprising. 

Since developing what we now call the Method of Ordered Multiple Interactions 
(MOMI), a number of other features of the method have been investigated and these will be 
reported during the presentation. First, a number of computations for scattering from a 
sinusoidal surface have been carried out to better understand those instances when the 
region of interaction on the surface is considerably larger than the area illuminated by the 
incident field. For sinusoidal surfaces, extended regions of current support were found to 
coincide with the production of a Bragg line which just grazes the surface in either the 
forward or backward directions [3]. The Bragg line appears to give rise to "diffraction 
propagation" wherein the energy carried by the grazing Bragg line is reconstituted by 
diffraction at the peaks of the sinusoidal surface. This appears to be the source for the large 
region of current support on the surface, i.e., much larger than predicted by the extent of 
the incident field. Another important aspect of MOMI is its very robust behavior relative to 
convergence. There are some very well documented cases in the literature where an iterative 
solution of the "usual" integral equation for the current induced on a perfect conducting 
rough surface fails to converge. MOMI has been applied to these cases and found to 
converge rather rapidly without any indications of difficulty. In fact, the convergence of 
MOMI appears to be closely allied with the number of "back-and-forth" multiple scatterings 
taking place on the surface. Since there are a finite number of such scattering events on the 
surface, convergence is guaranteed with MOMI. Stated another way, one can say that since 
MOMI recasts the basic integral equation into a form that is more closely allied with the 
actual back-and-forth multiple scattering processes that take place on the surface and since 



the number of these events must be finite (assuming no resonances), convergence of 
MOMI is guaranteed. This fact will be illustrated through an analysis of scattering by a 
resonant wave packet on an otherwise flat surface. Finally, we will discuss the role of 
current sampling density as we presently understand it. Our results to-date indicate that 
sampling density is dictated by the angles of incidence and scattering and the 
subwavelength scales of roughness on the surface. Not surprisingly, we have found that 
MOMI will predict the correct scattering from the surface which can be reconstructed from 
the samples and that as grazing incidence and backscatter is approached, the results become 
very sensitive to the very high frequency content of the surface roughness spectrum. 

The other aspect of EMIL's current research to be discussed will be the modeling of both 
surface and subsurface volume scattering with particular emphasis on predicting incoherent 
short pulse returns from penetrable surfaces. The particular problem to be addressed is that 
of the incoherent scattering of a short pulse emitted by a nadir-looking radar flying above a 
snow covered surface [4]. In this case there are two components to the scattering process. 
The first is the conventional surface scattering part which may be totally characterized by a 
scattering cross section per unit scattering area; this quantity, in turn, may be extracted from 
measured data by appeal to the radar equation. The part of the scattered power that is due to 
the volume inhomogenieties buried in the snow is much more difficult to determine 
because, unlike the surface component, it cannot be so easily extracted from measured data. 
That is, the volume contribution not only depends upon where the scattering is coming 
from but also how it got there] Since this effect can be analytically modeled only for a few 
cases, we are forced into dealing with effective parameters. In spite of this, we have 
developed an incoherent short pulse scattering model which accounts for the surface 
scattering and the volume scattering from the subsurface snow inhomogneieties including 
the possibility of ice layers which are know to exist [5]. It should be emphasized that this 
model is not a "first principles" model; that is, it does not relate the scattered pulse shape to 
the detailed physical structure of the snow. Rather, it is a parameterized model which 
makes use of electrophysical parameters such as the scattering cross section per unit 
scattering area of the surface, the effective extinction coefficient of the snow volume, the 
scattering cross section per unit scattering volume of the snow volume, etc. The motivation 
for such a model is to be able to characterize the 
scattering by as few parameters as possible; these parameters can then be exposed to a 
detailed study to see what physical processes affect them. 

Having developed a model for what is causing the incoherent scattering of short pulses 
from snow, the next step is to expose the model to the data and determine if the results are 
in concert with what is known to exist in the snow. This was done for two microwave 
frequencies and the results will be shown to be very consistent with our physical 
knowledge of the snow and ice. That is, in regions of Greenland where the temperature is 
sufficiently high as to support melting, scattering data showed no volume scattered 
component. In regions where the snow is known to be very dry, the great bulk of the 
scattered power was attributable to volume scattering. Finally, there are regions where 
subsurface layers of ice (or some dielectrically denser material) appear in the scattering 
data. 

As a final topic, the implications of this surface-volume scattering research will be 
discussed. 
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The Calculation of the Scattering of Electromagnetic Waves 

from a Two-Dimensional Surface Using the 

Method of Ordered Multiple Interaction 
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Code 474400D 

Research and Technology Division 
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China Lake, Ca 93555 

The scattering of electromagnetic radiation by a surface is often solved by the use 

of the Method of Moment in which the integral equation obeyed by the surface current is 

converted into a matrix equation. This matrix equation is then solved by inversion. Once 

the surface current is known, the scattered radiation can be computed. Matrix inversion 

scales as N3 where N is the number of unknowns, and therefore it is limited to problem 

with small dimension. This practically eliminates it as a method of choice for the problem 

of EM waves scattering from a two-dimensional surface. An alternative to matrix 

inversion is iterative method such as the simple Neumann iteration which only scales as 

N2. Even with the slower scaling, iterative methods still require long computation time 

when the scattering surface is two dimensional. Furthermore, the iterative solution can 

converge slowly or not at all (as in the case of the Neumann iteration for surface with 

large slope). 

Recently, Kapp and Brown [1] introduced a reformulation of the matrix equation 

which they named the Method of Ordered Multiple Interaction (MOMI). Through 

numerical calculation of the scattering of EM waves from a one-dimensional perfectly 

conducting surface with slope up to 40°, they found no problem with the convergence, 

and the convergence is very fast; in many cases that they considered one iteration is 



sufficient. The new matrix equation is obtained by breaking the original kernel K into a 

sum of a lower and an upper triangular matrix, 

j = rc + KJ = rc + (u+L)j. (i) 

Note that the diagonal elements of K are zero. This equation can be rewritten as 

J = (I - U)-1 (I - L)-1 fc + (I - U)-1 (I - L)-1 LUJ (2) 

or 

J = (I-L)-1(I-U)-1rc +(I-L)-'(I-U)-IULJ. (3) 

This new equation is then iterated. Although the inverse of (I-U) and (I-L) must be 

calculated for the Born term as well as for subsequent iteration, they can be done with 

0(N2) operations by backsubstitution. The new Born term already contains terms that 

describe scattering processes in which the wave is scattered continuously in one direction 

before being scattered again continuously in the other direction (hence the name MOMI), 

and therefore it is a more accurate approximation than the Born term in the regular 

Neumann iteration. If one needs to go beyond it, the current at the nth iteration is (using 

the eq. (3)), 

J„ =[(I-L)-,(I-U)-1UL]'!(I-L)-1(I-U)-1J",C (4) 

With the help of the identities Lfl-L)-1 = (I-L)"1 -1 and (I-Uy'U = (I-U)"1 -1, the matrix 

multiplication UL can be eliminated, and each iteration can be done with 0(N2) 

operations. The higher order terms have a simple physical interpretation for one- 

dimensional surface. The nth term includes all the multiple scattering processes that have 

up to [1 + 2n] changes in direction. From this we can see that the method should converge 

quickly if the dominant scattering processes on the surface are those that have few 



changes in direction. For two-dimensional surface, this picture is lost because of the 

mapping of the surface into a one-dimensional vector destroys the meaning of direction. 

In this presentation, I will describe the calculation of EM wave scattering from a 

perfectly conducting two-dimensional surface using the MOMI formulation. The 

motivation for such a calculation is the ability to study polarization effects. Since the 

calculation for two-dimensional surface is very time consuming, it is worthwhile to map 

out the convergence properties of the method as a function of the surface parameters (rms 

height a and correlation length a) to optimize computation time. This is done for a 

gaussian random surface with gaussian correlation. Surfaces with correlation length a < 

3.OX and slope, rms height/correlation length {da), < 1 were studied. I find that the 

method has no convergence difficulty except at or near a = a = 1 .OX,. Away from this 

region, convergence is achieved after 6 iterations in the worst case. I also looked at various 

incident angles (up to 75°) and polarization, and the convergence is quite insensitive to 

these parameters. 

Around the resonant region {a = a = 1.0X), the method converges slowly. The 

scattered field fluctuates around some true value, and the amplitude of the fluctuation 

decreases slowly with each iteration. The fluctuation is reduced if one goes away from the 

resonant condition by 0.2X in either cor a. The fact that this problem is worst at a = a = 

1 .OX is suggestive of some kind of resonance where multiple back and forth scattering is 

occuring (or possible shape resonance) causing the slow convergence of the method. To 

identify the areas that are the cause of the fluctuation, I examined the current distribution 

on two surfaces that have different convergent behavior. The surfaces are topologically 

equivalent at different roughness scale. Both surface has a = 1.0X, but one surface has a = 

1.0X and the other has c = 0.8X. The surface with a = 1.0X has, in certain areas, current 

intensity twice as high as those at a = 0.8X. I also found that different realizations of a 

surface with the same statistics may or may not have convergence difficulty. A possible 

explanation for this is that the topology of the surface is important. Again comparison of 



the surface current on these surfaces may help identifying the important topological 

features. Since the surface is statistical in nature, many realizations must be examined to 

come to a definite conclusion in this regard. 

The CPU time for calculating the scattering from a 64x64 and 128x128 point 

surface (8192 and 32768 unknowns) is 22 seconds and 5 minutes and 36 seconds per 

iteration, respectively, on one processor of a CRAY C90. The scaling is extemely close to 

N2. Extrapolating this, it will take roughly 1.5 hours of CPU time per iteration for a 

256x256 point surface. Further reduction of CPU time may be possible because the 

MOMI is a highly parallel algorithm. 

[1] D. A. Kapp and G. S. Brown, "A New Numerical Method for Rough Surface 

Scattering Calculations", submitted to IEEE Trans. Antennas & Propagat. 
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CENTER FOR COMPUTATIONAL ELECTROMAGNETICS 
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URBANA, IL 61801-2991 

1. Introduction 
The problem of calculating the statistical properties of electromagnetic 

scattering from random rough surfaces has received considerable attention 
in recent years. As described by Ishimaru [1], one of the most interest- 
ing phenomena associated with rough-surface scattering is the occurrence of 
backscattering enhancement. Many authors have contributed to the devel- 
opment of approximate analytical theories for rough-surface scattering [2-8]. 
Significant experimental work has also been carried out on rough-surface scat- 
tering [9-11]. Because of the limited region of validity (in terms of surface- 
roughness parameters) of the approximate analytical approaches mentioned 
above, much work has been done using Monte Carlo simulation in conjunc- 
tion with rigorous computational electromagnetic simulation techniques [12- 
19]. The three-dimensional vector wave scattering problem presents a great 
computational challenge. This paper describes our efforts to address this de- 
manding problem for the rough-surface scattering example. This work can 
also be used to simulate the effect of rough surface on surface plasmon mode 
[20], or surface plasmon polariton related to Anderson localization [21,22]. 

2. An FMM-FFT Algorithm for Rough-Surface Scattering 
This section presents a new algorithm developed for the efficient solution 

of the MOM matrix equation associated with the rough-surface scattering 
problem. The fast multipole method (FMM) [23-29] provides a very efficient 
and robust method for solving the MOM matrix equation. The FMM is a 
technique for fast computation of a matrix-vector multiply and is used in 
conjunction with an iterative matrix solver such as the conjugate-gradient 
(CG) method. Here we present a modification of the FMM designed to take 
advantage of the special geometry of the rough-surface scattering problem, 
in which the scatterer is nearly planar. 

A detailed physical description of the FMM is given in the literature [23- 
27]. As noted in [23] and [26], the FMM may be expressed mathematically 
as a sparse decomposition of the MOM impedance matrix 

Z = Z' + UTV. (21) 

In the FMM, current elements on the scatterer are grouped together in groups 
of size M. In the above representation of Z, Z' represents the interaction 
between groups that are near neighbors spatially. The matrix V computes 
the far-field radiation pattern of each group, tabulated at a discrete set of K 

t This work was supported by the Office of Naval Research under grant N00014-95-1- 
0872, the National Science Foundation under grant NSF ECS 93-02145, and the Army 
Research Office under grant DAAH04-93-G-0430. 



FMM FMM-FFT 

Figure 1. Illustration of the different grouping strategies employed 
by the FMM and FMM-FFT methods. In the FMM, the locations 
of the group centers are chosen to minimize the diameter of each 
group. In the FMM-FFT, the group centers are constrained to lie on 
a regular three-dimensional lattice. 

directions around the unit sphere. The matrix T translates the K radiated 
field terms from each transmitting group to each receiving group elsewhere 
on the surface, which is the key to the efficiency of the FMM. Finally, the 
received radiation pattern at each group is transformed by the matrix U into 
the spatial domain fields on the surface of the scatterer. 

Normally in the single-stage FMM, the group size M is chosen to be M ~ 
y/N, where N is the total number of surface current unknowns. The resulting 
cost of a matrix-vector multiply is 0(iV"3/2) instead of the N2 operations 
required for a dense matrix-vector multiply. Memory usage for this algorithm 
is also 0(NZ'2) [27]. 

One possibility to further accelerate this algorithm is to implement a 
multi-level version of the FMM, in which the scatterer is subdivided re- 
cursively into smaller and smaller groups, and the FMM is applied in a 
nested manner. This method, called the multi-level fast multipole algo- 
rithm (MLFMA), has been implemented previously by several researchers 
[25,28,29]. This method reduces the cost of a matrix-vector multiply, and the 
associated memory usage, to O(NlogN). 

The new algorithm developed here is based on the FMM, and is designed 
to take advantage of the nearly planar geometry of the rough surface. The 
main idea is the following: choose the group size M to be a small constant, 
independent of the problem size (the number of groups is thus proportional 
to N), and place the FMM group centers on a regular three-dimensional 
lattice. Then the discretized translation operator T becomes convolutional 
and may be applied in 0(Nlog N) operations using the FFT. The memory 
requirement of this solution strategy is of O(N). 

There is some inefficiency in the FMM-FFT algorithm due to the fact 
that the original problem, in which the unknowns are arranged on a two- 
dimensional surface, has now been embedded in a three-dimensional grid. 
This procedure has the effect of making NSD, the number of grid points in 
the three-dimensional lattice, significantly larger than the number of FMM 
groups. This effect is clearly larger for surfaces with greater RMS surface 
height a. However, the method is valid (i.e., will produce correct results) for 
any roughness parameters. 

Furthermore, since the translation operation is a linear convolution, the 
grid data must be zero padded by a factor of two in each spatial dimension 
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Figure 2. A test case comparing the FMM and the FMM-FFT. The 
geometry is shown in (a), the results in (b). The results overlay one 
another. 

to avoid unwanted edge effects due to the circular convolution computed via 
FFT. For a three-dimensional grid, this zero padding increases the effective 
FFT size by a factor of eight. 

3.  Numerical Results 
As an initial test case, consider a Gaussian rough surface with edge length 

L = 9.15A, RMS surface height a — 0.1A, and transverse correlation length 
/ = 1.0A. The incident field is a normally incident plane wave, polarized 
in the x direction. The problem was discretized with seven unknowns per 
wavelength in the x-y plane (i.e., A = A/7, where A is the discretization 
length in the x-y plane) for a total of N = 8, 064 surface current unknowns. 
The conjugate-gradient solution was stopped at a relative residual error of 
1CT3, requiring a total of 76 CG iterations. The geometry and scattered field 
are shown in Figure 2. As seen, the radar cross section (RCS) results obtained 
using the FMM and the FMM-FFT overlay one another exactly. The FMM 
code used to generate these results is the single-stage code described in detail 
in [27]. This code also served as the starting point for developing the FMM- 
FFT code used here. 

The computational requirements are larger for rougher surfaces. To cir- 
cumvent this difficulty, we have used the MLFMA for the case a = 0.7A, 
I = 1.5A. All parameters, except the surface roughness, are the same as for 
the previous example. Most notably, the memory required for the MLFMA 
is only 30 MB, significantly less than any of the previous methods. Second, 
the matrix fill time for the MLFMA is 11 min, again much less than for the 
other methods. The time for a matrix-vector multiply for this problem using 
the MLFMA is 82 sec, which is less time than is required by the brute-force 
MOM approach. Thus, the MLFMA is the only one of the computer codes 
discussed here that is suitable for modeling large-scale rough surfaces in the 
backscattering enhancement regime, using a typical engineering workstation. 

The total solution time using the MLFMA, however, is still fairly large 
due to the large number of CG iterations (146) needed to achieve a relative 
residual error of 10~3. The CG iteration converges more slowly for rougher 
surfaces, which is consistent with the findings of other researchers [13,18]. 

The first Monte Carlo simulation was performed using rough-surface pa- 
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Figure 3. (a) Monte Carlo simulation of the bistatic scattering 
coefficient 7 for a rough surface with RMS height a = 0.7A and 
transverse correlation length / = 1.5A. The angle of incidence is 
{6 = 10°, <f> = 0°). (b) Same but with RMS height a = 0.07A. Also 
shown are the results of the Kirchhoff theory. 

rameters a = 0.7A, I = 1.5A, L = 9.15A, A = A/7, and N = 8,064. The 
incident field is a vertically polarized Gaussian beam of half-width W = 2.3A 
incident from (6 = 10°, <f> = 0°). The MLFMA program was used to calculate 
the scattering from a total of 100 randomly generated rough surfaces. On the 
HP9000/715/50 workstation, the matrix fill time for each surface was 6 min, 
and the average solve time was 41 min; an average of 27 CG iterations were 
required to achieve a relative residual error of CGTOL = 10_1. Thus, the 
total simulation time was 100 x 47 min = 78 hr of CPU time. The program 
used 30 MB of memory. 

The results of the first Monte Carlo simulation are shown in Figure 3a. 
There is a pronounced peak of the scattering coefficient in the backscatter- 
ing direction, (9 = 10°, 0 = 0°). This backscattering enhancement effect is 
quite strong in both the co-polarized scattering (VV) and the cross-polarized 
(HV) scattering. This result contrasts strongly with the second Monte Carlo 
simulation, discussed below. 

The surface roughness parameters for the second simulation were a = 
0.07A and / = 1.5A. The results of this simulation, along with the results 
of the approximate analytical Kirchhoff theory [2], are shown in Figure 3b. 
There is excellent agreement between the two solution methods. 

4.  Conclusions 
In this paper, we have addressed the challenging goal of solving large- 

scale random rough-surface scattering problems using an MOM/Monte Carlo 
approach combined with efficient computational strategies. 

A new FMM-FFT algorithm has been developed and investigated. This 
algorithm requires O(N) memory and O(NlogN) CPU time per matrix- 
vector multiply. The resulting computer code has been shown to be very 
efficient for surfaces with small RMS surface height, outperforming other fast 
algorithms such as the FMM and the MLFMA. While the FMM-FFT is most 



efficient for small-scale roughness, the algorithm is also applicable to problems 
with large-scale roughness. An advantage of the FMM-FFT is the relatively 
simple structure of the algorithm. Since much of the computational burden is 
placed on the calculation of FFTs, machine-specific subroutine libraries can 
be used to implement the algorithm efficiently. 

For problems with larger RMS surface heights, the MLFMA was found to 
provide superior performance. The main advantages of the MLFMA are its 
small memory usage and moderate matrix fill time. The algorithm requires 
O(NlogN) memory and O(NlogN) CPU time per matrix-vector multiply. 

References 
[1] A. Ishimaru, "Backscattering enhancement: from radar cross sections to 

electron and light localizations to rough-surface scattering," IEEE An- 
tennas Propagat. Mag., vol. 33, no. 5, pp. 7-11, October 1991. 

[2] J. A. Kong, Electromagnetic Wave Theory. New York: Wiley, 1986. 
[3] S.O. Rice, "Reflection of electromagnetic waves from slightly rough sur- 

faces," Commun. Pure Appl. Math., vol. 4, pp. 351-378, 1951. 
[4] G. R. Valenzuela, "Depolarization of EM waves by slightly rounded sur- 

faces," IEEE Trans. Antennas Propagat., vol. 15, pp. 552-557, 1967. 
[5] J. C. Leader, "Bidirectional scattering of electromagnetic waves from 

rough surfaces," J. Appl. Phys., vol. 42, no. 12, pp. 4808-4816, November 

[6] E. Bahar and B. S. Lee, "Full wave solutions for rough-surface bistatic 
radar cross sections:   comparison with small perturbation, physical op- 
tics, numerical, and experimental results," Radio Science, vol. 29, no. 2, 
pp. 407-429, March-April 1994. 

[7] R. E. Collin,  "Scattering of an incident Gaussian beam by a perfectly 
conducting rough surface,"  IEEE Trans.   Antennas Propagat., vol. 42, 
no. 1, pp. 70-74, January 1994. 

[8] A. A. Maradudin and E. R. Mendez, "Enhanced backscattering of light 
from weakly rough, random metal surfaces," Appl.  Opt, vol. 32, no. 19, 
pp. 3335-3343, July 1993. 

[9] E. R. Mendez and K. A. O'Donnell, "Scattering experiments with smoothly 
varying random rough surfaces and their interpretation," in Scattering in 
Volumes and Surfaces, M. Nieto-Vesperinas and J. C. Dainty, Eds. Am- 
sterdam: North-Holland, pp. 125-141, 1990. 

[10] J. C. Dainty, M. -J. Kim, and A. J. Sant, "Measurements of angular 
scattering by randomly rough metal and dielectric surfaces," in Scattering 
in Volumes and Surfaces, M. Nieto-Vesperinas and J. C. Dainty, Eds. 
Amsterdam: North-Holland, pp. 143-155, 1990. 

[11] Y. Kuga, J. S. Colburn, and P. Phu, "Millimeter-wave scattering from 
one-dimensional random rough surfaces of different surface correlation 
functions,"  Waves in Random Media, vol. 3, pp. 101-110, 1993. 

[12] N. Garcia and E. Stoll, "Monte Carlo calculation for electromagnetic-wave 
scattering from random rough surfaces," Phys, Rev. Lett., vol. 52, no. 20, 
pp. 1798-1801, May 1984. 

[13] R. Devayya and D. J. Wingham, "The numerical calculation of rough- 
surface scattering by the conjugate gradient method," IEEE Geosci. Re- 
mote Sensing, vol. 30, no. 3, pp. 645-648, May 1992. 

[14] L. Li, C. H. Chan, L. Tsang, K. Pak, and P. Phu, "Monte Carlo simula- 
tions and backscattering enhancement of random metallic rough surfaces 
at optical frequencies," J. Electromagn.   Waves and Appl., vol. 8, no  3 
pp. 277-293, 1994. 



[15] L. Tsang, C. H. Chan, K. Pak, and H.' Sangani, "Monte-Carlo simulations 
of large-scale problems of random rough-surface scattering and applica- 
tions to grazing incidence with the BMIA/canonical grid method," IEEE 
Trans. Antennas Propagat., vol. 43, no. 8, pp. 851-859, August 1995. 

[16] P. Tran and A. A. Maradudin, "Scattering of a scalar beam from a two- 
dimensional randomly rough hard wall: Dirichlet and Neumann boundary 
conditions," Appl. Opt, vol. 32, no. 15, pp. 2848-2851, May 1993. 

[17] L. Tsang, C. H. Chan, and K. Pak, "Backscattering enhancement of 
a two-dimensional, random rough surface (three-dimensional scattering) 
based on Monte Carlo simulations," J. Opt. Soc. Am. A, vol. 11, no. 2, 
pp. 711-715, February 1994. 

[18] P. Tran and A. A. Maradudin, "The scattering of electromagnetic waves 
from a randomly rough 2D metallic surface," Opt. Commun., vol. 110, 
pp. 269-273, August 15, 1994. 

[19] A. K. Fung, M. R. Shah, and S. Tjuatja, "Numerical simulation of scat- 
tering from three-dimensional randomly rough surfaces," IEEE Geosci. 
Remote Sensing, vol. 32, no. 5, pp. 986-994, September 1994. 

[20] W. C. Chew, Waves and Fields in Inhomogeneous Media. New York: 
Van Nostrand Reinhold, 1990. 

[21] E. Burstein, A. Hartstein, J. Schoenwald, A. A. Maradudin, D. L. Mills, 
and R. F. Wallis, "Surface polaritons - electromagnetic waves at inter- 
faces," in Polaritons, E. Burstein and F. de Martini, Eds. London: Perg- 
amon, pp. 89-108, 1974. 

[22] D. Maystre and M. Saillard, "Localization of light by randomly rough 
surfaces: concept of localiton," J. Opt. Soc. Am. A, vol. 11, no. 2, 
pp. 680-690, February 1994. 

[23] R. Coifman, V. Rokhlin, and S. Wandzura, "The fast multipole method 
for the wave equation: a pedestrian prescription," IEEE Antennas Prop- 
agat. Mag., vol. 35, no. 3, pp. 7-12, June 1993. 

[24] C. C. Lu and W. C. Chew, "Fast algorithm for solving hybrid integral 
equations," IEE Proc.-H, vol. 140, no. 6, pp. 455-460, December 1993. 

[25] C. C. Lu and W. C. Chew, "A multilevel algorithm for solving boundary 
integral equations of wave scattering," Microwave Opt. Technol. Lett., 
vol. 7, no. 10, pp. 466-470, July 1994. 

[26] R. L. Wagner and W. C. Chew, "A ray-propagation fast multipole algo- 
rithm," Microwave Opt. Technol. Lett., vol. 7. no. 10, pp. 435-438, July 
1994. 

[27] J. M. Song and W. C. Chew, "Fast multipole solution using parametric 
geometry," Microwave Opt. Technol. Lett., vol. 7, no. 16, pp. 760-7C5, 
November 1994. 

[28] J. M. Song and W. C. Chew, "Multilevel fast-multipole algorithm for 
solving combined field integral equations of electromagnetic scattering," 
Microwave Opt.  Technol. Lett., vol. 10, no. 1, pp. 14-19, September 1995. 

[29] B. Dembart and E. Yip, "A 3D fast multipole method for electromag- 
netics with multiple levels," 11th Annual Review of Progress in Applied 
Computational Electromagnetics, pp. 621-628, March 1995. 

[30] R. J. Larsen and M. L. Marx, An Introduction to Mathematical Statistics 
and its Applications" 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, 1986. 



Observations of Scattering Effects due to Plasmon Polariton Excitation on 

Rough Metal Surfaces 

K. A. O'Donnell. C. S. West, and M.E. Knotts, The School of Physics, Georgia Institute 
of Technology, Atlanta, Georgia 30332-0430, USA. 

Over the years, many theoretical studies have considered the consequences of the 

excitation of surface plasmon polaritons on metal surfaces with random roughness [1-6]. 

Examples of effects predicted include backscattering enhancement [1,2], diffuse light 

bands [3], polarization effects with two-dimensional roughness [4], enhanced absorption 

[5], or more subtle effects arising from band gaps [6]. However, this work had generally 

not been adequately balanced by controlled experimental studies to the extent that a 

considerable number of the predicted effects had not even been observed. Why has this 

been the case? For experimentalists, it is not usually the scattering measurements 

themselves that are so difficult. Instead, many of the experimental possibilities have been 

severely limited simply because the fabrication of many types of surface roughness has 

been well beyond experimental capabilities. For one example, to this day no experiment 

has succeeded in observing polariton-related backscattering enhancement under the 

conditions it was first predicted to occur over ten years ago [1,2]. The surface parameters 

required were stated clearly and, from the lack of an experimental response, one can only 

conclude that it has not been possible to fabricate such a surface. 

It is nonetheless possible to fabricate rough metal surfaces that, while not identical 

to those of theoretical studies above, are otherwise adequate to produce the desired effects. 

In particular, we employ optical methods to fabricate rough surfaces of known and 

controllable statistics in photoresist. In one of our techniques [7], a photoresist-coated 

glass plate is exposed to a large number N of sinusoidal fringe patterns of different periods 

and random relative phase; the individual exposures represent Fourier components that, for 

large N (500<N<7500 in practice), produce an effectively random roughness having 

Gaussian height statistics. This Fourier technique has been used to produce, for simplicity, 

a roughness power spectrum S(k) that is of constant height between two limits, but nearly 

zero for all other wavenumbers k. A second technique we have developed [8] involves 

scanning a fine-scaled speckle pattern as the plate is exposed; this technique produces a 



spectrum S(k) that is of nearly Gaussian form centered on k = 0. Further, a photoresist 

plate can first be exposed to a strong sinusoidal fringe pattern, and then exposed to either of 

the two roughness-producing processes discussed above. In this case, the resulting 

surface is effectively a diffraction grating with an additional random roughness. After a 

photoresist plate has been exposed with the chosen technique, it is developed, coated with 

an optically thick layer (200 nm) of gold, is characterized with a stylus profilometer, and is 

finally ready for use in scattering studies. 

We present scattering measurements in the case of a surface with a rectangular 

roughness spectrum, centered on nonzero wavenumber, with an rms roughness of 15 nm. 

Experiments are conducted at a variety of wavelengths from 543 to 674 nm, and it is 

shown that backscattering enhancement may be observed as long as the polariton 

wavenumber falls where S(k) is nonzero. Further, if the polariton wavenumber is near one 

of the spectral limits, at various incidence angles one may observe either (a) no polariton- 

related scatter, (b) diffuse scatter due to the excitation of surface waves travelling in only 

one direction, or (c) scatter arising from counterpropagating plasmon polaritons. It is only 

for incidence angles satisfying the latter case that strong backscattering enhancement is 

observed. 

In further experiments, it is possible to completely isolate the scattering processes 

that produce backscattering enhancement. In particular, it is shown that a surface having 

but two appropriate Fourier components allows the coherent interference responsible for 

backscattering enhancement to be observed directly. In particular, if one Fourier 

component launches a plasmon polariton, and the second component launches a 

counterpropagating plasmon polariton, a diffracted order that coincides with the 

backscattering direction is observed to sharply increase in power. By considering effects 

seen as the source wavelength is tuned through the critical wavelength that provides this 

simultaneous excitation, it is shown that the observations are consistent with the 

constructive interference of two isolated time-reversed paths. 

The case of a sinusoidal grating with an additive roughness is also addressed 

experimentally. We observe distinct peaks at fixed scattering angle that are the diffuse light 

bands that had been noted in qualitative observations over twenty years ago [3]. It is 

discussed that these bands arise from plasmon polariton excitation produced by the random 

roughness; the excited polaritons are then outwardly coupled by the grating to create the 



bands. It is demonstrated that the bands may take on various forms including a maximum, 

minimum, or an s-shaped curve. Further, the polarization-dependence of the diffuse bands 

is nontrivial and may be addressed through the Mueller matrix elements. 

If the period of the roughened grating is appropriate to provide coupling of one 

surface wave to its counterpropagating counterpart, it is well-known that a gap appears in 

the polariton dispersion relation. It was discussed in numerical work by Michel [6] that, as 

the illumination is tuned through the frequency for which the gap appears, a single surface 

may produce three distinct effects. First, the diffuse light bands should be observed when 

the grating provides coupling to propagating waves, then suppression of polariton-related 

scatter should be seen within the band gap, and finally the appearance of backscattering 

enhancement should be observed. We provide direct experimental measurements of these 

three effects with a single well-characterized surface, and discuss other unusual behavior 

present in both the diffuse scatter and in the specular reflection. 
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SI Canonical Scattering Trobltm 
(Experimental data will be made available for all cases below; results 

show backscattering effects from surface plasmon polaritons) 

A gold surface has surface statistics consistent with a Gaussian process and 
an rms roughness a of 15.4 nm. The surface power spectrum &(k) has the 
unusual form shown: it exhibits a linear decay from a maximum at 
wavenumber k = 0 until it reaches zero at k = 4.50 x 10*3 nm-1, &{k) then 
remains zero until it attains a constant value for k between 8.56 x 10"3 

nm-1 and 13.3 x lO3 nnr1. The latter rectangular part contains 92% of 
the area of €>{k), while the linear part near k = 0 contains 8% of the area. 

The mean diffusely scattered intensities Ia are to be determined for 
any of three cases (with a = s or/?, illumination wavelength.A, incidence 
angle 0;, and scattering angle 6S): 

Case A: Is and Ip, for A = 674 nm, 0; = 4°, with 0S on (-90°, 90°). 
Case B: Is and Ip, for A = 543 nm, 0; = 0°, with 6S on (-90°, 90°). 
Case C: Ip for A = 674 nm, 0/ = 6°, 10°, 19°, and 24°, with 6S on (-30°, 
30°). 

Normalization of Ia is the usual convention (unit area would imply perfect 
diffuse reflectance), and assume dielectric constants to be £ = -13.3 + 
1.03/ (A = 674 nm), or e = -5.00 + 2.13/ (A = 543 nm). Plots of/« should 
be scaled such that 10° = 1.0 cm on the horizontal axis, and 0.10 
dimensionless intensity units = 4.0 cm on the vertical axis for Cases A and 
B. Expand the horizontal axis to 10° = 3.0 cm for Case C. 
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1.   OUTLINE 

The exact description of electromagnetic waves scattering from a rough surface separating 
two dielectrics is usually in terms of a boundary integral equation in coordinate space. Several 
versions of boundary integral equations are available. Starting with Green's theorem on say the 
electric field and the scalar free-space Green's function yields a Helmholtz integral representation 
for the electric field using boundary unknowns of the electric field and its normal derivative. This 
is a transitional stage in derivations since the boundary conditions are in terms of currents. The 
unknowns are replaced using identities relating them to the currents and charge densities and the 
resulting representation is that due to Stratton and Chu. Further, taking the curl of the Stratton- 
Chu equations yields the Franz equations which are representations solely in terms of tangential 
boundary currents. Integral equations result in the limit as the exterior coordinate variable 
approaches the surface. Depending on the formulation, finite part integrals may result, and 
computational techniques have been developed to treat these cases. Common examples resulting 
from this are the Electric Field Integral Equations (EFIE) and the Magnetic Field Integral 
Equation (MFIE). 

In this discussion we return to the original formulation in terms of the electric field and its 
normal derivative on the boundary. We develop continuity conditions for the normal derivative of 
the electric field using the continuity conditions for the current. An additional term results which 
can be integrated by parts and folded into the term multiplying the electric field on the boundary. 
The result is a 6 x 6 system of equations for the six boundary unknowns (electric field vector and 
its normal derivative). Broken up into four 3x3 block matrices, the advantage of the system is 
that three of the blocks are diagonal. The entire coupling resides in one 3x3 block. 

2.   SCALAR CASE 

Consider a rough interface z = h (xj (where x, = (x, y)) separating media of different densities 
Pj (ratio p = pVpi) existing in regions Vj(j=\ is z>h andy" = 2 is z<h). The scalar fields in each 
region satisfy Helmholtz equations with different wave numbers kj. The formalism uses Green's 
theorem in each region with free-space Green's functions G, corresponding to each half-space, 
continuity of the fields (if/) and their normal derivatives (AO at the interface, and the limits of the 
field representations as the field point approaches the surface h. The equations are 



- j JGl{xixh)N{xh)dxi 

(1) 

and 

l-il>(x'h)   =   p J J G2{xixh)N{xh)dxt 

- j J rijd^ixi xh)ip(xh)dxt, 

(the integrals involving the normal derivatives of Gi and G? use the direct values of these 
functions). The result is two coupled integral equations for the two boundary unknowns y/and N. 
They can be thought of as second-kind equations for yand first-kind on N [1, 2], Other 
equations can be generated by taking the normal derivative of the field representations and then 
passing to the surface limit. These yield hypersingular equations on N and first kind on y/ [3]. 
Alternative versions of the latter equations are available due to Maue [4] and Mitzner [5]. For 
scattering from bounded bodies, linear combinations of these equations yield equations unique at 
all frequencies [6, 7]. For our case this is not necessary since the surface is assumed to be of 
infinite extent. The result is two coupled equations on the boundary unknowns. 

3.   CANONICAL ELECTROMAGNETIC CASE 

Equations analogous to those for the scalar case can be derived for each component of the 
electric and magnetic fields. To continue the development requires continuity conditions on, say, 
the electrical field (which are known via the displacement continuity results) and continuity 
conditions on the normal derivative of the electric field (which are not standard boundary 
unknowns). 

The development of the canonical formalism due to Stratton and Chu [8, 9] rewrites the above 
boundary unknowns in terms of the normal components of the electric and magnetic fields (2 
terms) and the tangential boundary currents (4 terms). The continuity of the four currents implies 
the continuity of the normal components. The result is four coupled integral equations on the 
currents. The equations resulting from the electric and magnetic field representations are referred 
to as the electric field integral equation (EFIE), a first kind equation, and the magnetic field 
integral equation (MFIE) which is second kind [10, 11], Each contains two boundary unknowns. 

An alternative to the Stratton-Chu formalism is to take the curl of the Stratton-Chu field 
equations and then take the surface limit. The gradient terms in the equations vanish (they contain 
the normal components of the fields). The resulting equations are alternative versions of the EFIE 
and MFIE but the kernels have higher order singularities. These were published by Franz [12] 
and the derivation from Stratton-Chu was given by Hönl et al [13]. They were previously used by 
us in the rough surface scattering problem in conjunction with diagram techniques [14]. 



4.   ALTERNATIVE EQUATIONS 

We return to the original Green's theorem results analogous to the scalar case. The problem 
with the equations was the lack of a continuity condition on the normal derivative of the electric 
field. Using the continuity of the currents a quasi-continuity condition on the normal derivatives 
can be derived. It contains a remainder term consisting of tangential surface derivatives which can 
be integrated by parts and the result combined with the electric field unknown under the integral. 
For the electric fields the displacement and current continuity conditions can be written in the 
form (summation convention, s is the ratio of dielectric constants) 

Ef\xh)=Atj{xt)Ef\xh\ (3) 

where 

Aij{xt) = 6ij + [e~l - l)n,n;, (4) 

The resulting equations are analogous to the scalar equations. They are 

\WS'h)   =   E?\xi) + I j'njdjdix^xJEiixridxt 

~ j J Gi{x'h,xh)Ni{xh)dxu 

(5) 

and 

-Atj(x;)Ej(xi)   =   p. JJ' G2{xixh)Nl{xll)dxl 

+ j j KitfLxh)Ej{xh)dxt. 
(6) 

The equations are in terms of the boundary electric field (£,) and its normal derivative (N,). The 
kernel Ky in Eq. (6) contains normal and tangential derivatives of the Green's functions and // is 
the ratio of magnetic permeabilities. 

The key result of these equations is that only three of the six equations are coupled. This is a 
reduction from the four coupled Stratton-Chu and Franz equations. This result is also evident in a 
spectral coordinate version of the above [15].  Some of these results will appear shortly [16]. 
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Backscattering Enhancement and Localization Effect in the 
Scattering from a Random Rough Metal Surface 

- Stochastic Functional Approach - 
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The scattering of light by a silver film with a random rough surface and the excitation of 
surface plasmon modes on the metal surface are studied by means of the stochastic functional 
approach assuming that the random surface is a homogeneous Gaussian random field. The 
stochastic wave field, given in the stochastic Floquet form due to the homogeneity of ran- 
dom surface, is represented as a Wiener-Ito expansion in terms of Wiener-Hermite orthogonal 
functionals, and approximate solutions are obtained for the Wiener kernel functions. 

We deal with the attenuated total reflection (ATR) configuration which consists of a silver 
film sandwiched between air and a crystal prism through which the surface plasmon on the 
silver-crystal interface is excited. Free plasmon mode is given by a pole of the free plasmon 
propagator in the absence of the surface roughness, while the "dressed" or perturbed plasmon 
is defined by a complex pole of the perturbed plasmon propagator which involves the mass 
operator [1]. The mass operator, or the self-interacting operator which appears in the perturbed 
plasmon propagator, describes the "dressed" plasmon mode involving the multiple scattering 
effect due to the surface roughness. The mass operator is shown to satisfy the nonlinear integral 
equation, which corresponds to the Dyson equation in the multiple scattering theory. 

The first Wiener kernel, expressed by the perturbed plasmon propagator, can be interpreted 
as describing a "single" scattering process of "dressed" plasmon, while the second Wiener 
kenrnel describes a pair of reciprocal, symmetric "double" scattering processes of "dressed" 
plasmons. 

The random surface is assumed to be a random grating such that the power spectrum 
possesses a pair of sharp peaks at the Bragg spatial frequency for the plasmon mode, so that 
the random surface looks like a periodic grating with spatial fluctuations. With the ATR 
geometry, using silver's dielectric constant at He-Ne laser frequency, the angular distributions 
of incoherent scattering into both air and crystal sides are numerically calculated by using the 
first- and second Wiener kernels for various combination of parameters. 

In the angular distribution of incoherent scattering into crystal, strong peaks appear cor- 
responding to the excited forward- and backward-travelling plasmon modes, which are mainly 
described by the first Wiener kernel containing the "dressed" plasmon propagator, and an en- 
hanced scattering peak appears in the backward direction. These resonance peaks, visible in 
the crystal side, are invisible in the air side because of the plasmons being evanescent. In the 
incoherent scattering distribution in the air side, an enhanced scattering peak also appears in 
a certain direction related to the incident angle in the crystal side. 

The enhanced scattering observed on both sides comes from the second Wiener kernel 
that describes the "double scattering" processes occurring in the reciprocal directions, where 
the strongly excited plasmon modes take part in the intermediate processes of the "double 
" scattering, and the pair of "double" scattering process interfere each other to create the 
enhancement in the scattering amplitude. The imaginary part of the "dressed" plasmon pole 
is closely connected with the peak width of the enhanced backscattering. 



The mechanism of the backscattering enhancement so expained is quite similar to the scalar 
wave scattering from a Neumann random surface [2], electromagnetic scattering from a perfectly 
conducting random surface [3] and the scattering from a waveguide structure with random 
boundary [4]. 

At the resonant incidence where the incident angle satisfies the Bragg condition associated 
with the Bragg spatial frequency of the random grating, the surface plasmon mode is strongly 
excited on the random grating, and would propagate in the "random medium" along the sur- 
face, and the interaction of such propagating modes with the rough surface would be much 
stronger than in the "double" scattering processes which create the enhanced backscattering. 
Consequently, it is expected that the localization of plasmon waves may take place on the rough 
surface as a result of such "multiple" scattering of "dressed" plasmon modes that is strongly 
excited by the resonant incidence. 

Although the multiple Wiener integral in terms of Gaussian random measures describing 
the random surface is introduced as a mathematical tool to express the stochastic wave field, 
it is possible to obtain a realization of the stochastic wave field by numerically calculating the 
multiple Wiener integrals using the Gaussian random measure approximated by a set of Gaus- 
sian random numbers. For a random grating with a pair of sharp spectral peaks, the stochastic 
wave field in terms of Wiener-Ito expansion can be greatly simplified, and the stochastic co- 
efficients of the forward- and backward travelling "dressed" plasmon waves can be given by 
the sum of even-order and odd-order multiple Wiener integrals, respectively, and they can be 
numerically calculated by an iterative procedure. In this way we can evaluate the random wave 
field as a result of "multiple" scattering process, and we get the localized plasmon waves by 
the computation up to several order of multiple integral corresponding to the order of "multi- 
ple" scattering. Several localized plasmon waves on a certain interval are actually obtained by 
such numerical calculation of stochastic wave field [1]. At resonant excitation this approximate 
formalism for "multiple" scattering gives a divergent results as the order is increased, yet the 
localized wave form being almost unchanged. To avoid the divergence in the resonant excitation 
we can employ the other formulation of the stochastic functional approach in such a way that 
we can formulate from the begining the interactions between randomly modulated plasmon har- 
monics, where we have recourse to the other method of solution than the Wiener-Ito expansion. 
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1. Introduction 

The scattering of x-rays from rough surfaces and interfaces has been used extensively as 

a powerful experimental tool for investigating surface and interface properties (see, e.g., 

the recent reviews [1,2] and references therein). Since the dielectric function of the scat- 

tering medium e(u>) in the x-ray frequency region is close to, and a little smaller than, 

unity, e(u>) = 1 — T?(U;), where TJ(U) is real and lies in the range 10-6 — 10-3 depend- 

ing on the wavelength of the x-rays, the phenomenon of total internal reflection of x- 

rays occurs when the angle of incidence 90 equals the critical angle 6C = cos-1 JT](OJ). 

As a result, the reflectivity for grazing angles of incidence tends to unity, and the in- 

tensity of the incoherent component of the scattered x-rays tends to zero. For angles of 

incidence smaller than 6C, however, the reflectivity rapidly tends to zero, while the in- 

tensity of the incoherent component of the scattered x-rays increases. In addition, the 

latter intensity displays a sharp asymmetric peak, called the Yoneda peak [3], at a scat- 

tering angle 6S equal to 9C, which has been observed in x-ray scattering from rough solid 

and liquid surfaces, and from the interfaces in multilayer structures [4-9]  (see Fig.    1). 
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Fig.l The angular distribution of the total power reflected from a gold surface as a function 

of the grazing scattering angle 9S = n/2 - 9S for several values of the grazing angle of 

incidence 90 = 7r/2 — 90 greater than 9C = T/2 — 9C. The wavelength of the incident 

x-rays is A = 1.54A. 9C = 0.52°. The Yoneda peak at 9S = 9C is clearly seen, as is the 

specular peak at 6S = 90. [After Ref. [4]]. 

Theories of x-ray scattering from rough surfaces and interfaces in multilayered structures 

have been constructed on the basis of the Born [6] and distorted-wave Born approximations 

[6], which exploit the weak interaction of x-rays and the scattering medium. The Born 

approximation is valid for small angles of incidence and scattering, but breaks down in the 

vicinity of 9C [2,6]. The distorted-wave Born approximation describes well the scattering 

of x-rays for angles of incidence in the vicinity of 9C, e.g. the angular dependence of the 

intensity of the incoherent component of the scattered x-rays obtained in this approximation 

displays the Yoneda peak. However, the distorted-wave Born approximation fails at smaller 

angles of incidence [2,6]. 



For grazing angles of incidence smaller than 9C = TT/2 — 9C both the Born and distorted- 

wave Born approximations break down: the reflectivity obtained in the Born approximation 

diverges instead of saturating at 9C, while the reflectivity obtained in the distorted-wave Born 

approximation is greater than unity or, for a weakly rough surface, is exactly equal to unity 

[6]. 

In this paper we present a theory of x-ray scattering from randomly rough surfaces based 

on the method of reduced Rayleigh equations [10], that possesses the advantages of the Born 

and distorted-wave Born approximations, and lacks their disadvantages. In our approach the 

integral equation for the scattering amplitude is calculated perturbatively as an expansion in 

powers of the dielectric contrast rj(u>), the small parameter of our problem. The validity of the 

resulting solution is limited only by the condition for the validity of the Rayleigh hypothesis 

[11,12], on which the method of reduced Rayleigh equations is based, viz. |«fC(^i)/^iI < 1 

in the case of a one-dimensional random surface, and \V((x1,x2)\ < 1 in the case of a 

two-dimensional random surface, where ((xi) (((x1,x2)) is the surface profile function which 

defines the position of the surface through the equation x3 = ((x1)(x3 = ((x1,x2)) [13-15]. 

We also assume that the scattering medium is homogeneous on the length scale being 

probed, i.e. the atomic structure of the scattering medium is ignored. This assumption is 

valid as long as we deal with small angle scattering, where the condition 47r(a/A)sin# < 1 

is satisfied, where 20 is the scattering angle, i.e. 29 = -K - 90 - 9S, A is the wavelength of the 

x-rays, and a is a typical length scale for any inhomogeneity within the scattering medium 

[6]. 

2. Scattering Theory 

Due to space limitations we will outline here only the derivation of the results for scattering 

from one-dimensional surfaces. The derivation of the corresponding results for the scatter- 

ing of x-rays from two-dimensional random surfaces, while algebraically more complicated, 

follows closely that for one-dimensional surfaces, and will be presented elsewhere. 

The system we consider consists of vacuum in the region x3 > ((^l), and a metal charac- 



terized by an isotropic, frequency-dependent dielectric function e(u) in the region x3 < C(xi)- 

The surface profile function C(xi) iS assumed to be a single-valued function of xt that is dif- 

ferentiate as many times as is necessary, and constitutes a zero-mean, stationary, Gaussian 

random process, defined by (CO^K^i)) = <$2W(|xi - x'x|). The angle brackets here denote 

an average over the ensemble of realizations of C(^i)5 and S = (£2(xi))2 is the rms height 

of the surface. For the surface height autocorrelation function we will assume the Gaussian 

form W(|:ci|) = exp(—xl/a2). The characteristic length a appearing in the expression is the 

transverse correlation length of the surface roughness. 

The surface is illuminated from the vacuum side by a p-polarized electromagnetic wave 

of frequency u, whose plane of incidence is the xix3-plane. The single non-zero component 

of the magnetic vector in the region x3 > C(xi)max is given by 

H>(xux3\w) = e
ikx'-iao(k)xi + J°° ^-R(q\k)eiqxi+a°^x\ (2.1) 

where a0(q) = ((u2/c2) - q2)*, with Rea0(q) > 0, Ima0(q) > 0. 

The differential reflection coefficient (drc) dR/d9s is the fraction of the power in the 

incident wave that is scattered into an angular interval of width d9s about the scattering 

angle 8S. Since the scattering surface is random, we are interested not in the differential 

reflection coefficient itself, but in its average over the ensemble of realizations of the surface 

profile function, (dR/d6s). The contribution to the mean differential reflection coefficient 

from the coherent and incoherent components of the scattered electromagnetic field are given 

by 

(w)     =  f^^lW'l*»!' (2'2a) 
\^s/coh -Ll 27TC COS ö0 

®. k - hZ^&^w -mmn       (2-2b) 

respectively, where L\ is the length of the xi-axis covered by the random surface, while the 

angles of incidence and scattering are related to the wave numbers k and q by k = (u>/c) sin 0Q 

and q = (a>/c)sin0s, respectively. The angle of incidence 0O is measured counterclockwise 

from the Xß-axis, while the scattering angle 9S is measured clockwise from this axis. 



The reduced Rayleigh equation [10] satisfied by the scattering amplitude R{q\k) can be 

written in the form 

R{q\k) = 2*6(q - k)Ro(k) + ^N(q\k) + -^ jT ^-M{q\p)R{p\k), (2.3) 

where 

D ... ea0(k) -a(k) 
Mk)   =   «*(*) + «(*) (^) 

NW   =   ^Sf-'Wrt + o.Wk-*)      ■ (2.4b) 

d(q)    =   ea0(q) + a(q), (2.4d) 

a{q) = (e(u;2/c2) - q2)*, with Rea{q) > 0, Ima{q) > 0, and 
/oo 

^xie-^(e-^)-l). (2.5) 

We will seek the solution of Eq. (2.3) in the form 

R(q\k) = 2w8(q - fc)fio(fc) + £(#), (2.6) 

where the function B(q\k) satisfies the equation 

B(q\k) = r,A(q\k) + r, |_~ ^m(q\p)B(p\k), (2.7) 

with 

A{q\k) = n(q\k) + m(q\k)Ro(k) (2.8a) 

m(q\k) = rh(q\k)J(a(q) - a0(k)\q - k) (2.8b) 

n(q\k) = h(q\k)J(a(q) + a0{k)\q-k) (2.8c) 

(?l } " %)K<?) - *„(*)] (2'8d) 

{ql) ~ d(q)[a(q) + ao(k)Y ^ 



The iterative solution of Eq. (2.7) is formally an expansion of B(q\k) in powers of 77: 

B(q\k)   =   rJMl\k) + V2J^o^rn(<l\Pi)MPi\k) + 

+V3 r f- r d41rn{q\pl)m{pl\p2)A{P2\h) + ■■■ (2.9) 
J-00   Z~K  J-oo   Z"K 

3. Coherent Scattering 

From Eq. (2.2a) we see that the contribution to the mean drc from the coherent component 

of the scattered x-rays is expressed in terms of (R(q\k)), where 

(R(q\k)) = 2TT% - k)Ro(k) + (B(q\k)). (3.1) 

To obtain {B(q\k)) we average Eq. (2.9) term-by-term: 

(B(q\k))    =    v(A(q\k)) + V
2J^^(m(q\p1)A(p1\k)) + 

+n3 r T1
 r T^^bMpihMW)) + • • • (3-2) J-00 Zir J-co Zu 

In view of Eqs.  (2.8a)-(2.8c) we see that the nth order term in this expansion contains the 

average of the product of n J(i\Q) functions. This average is given by 

(Jhi\Q)J{l2\Q) ■ • • Aln\Qn)) = fi 2n8(Q3)(e-^
62 - 1) + 

71 /"CO 

+6(n - 2)      T    ' 2ir8(Qt + Q3)e~^^52 /     due-^e^'^^ - 1) x 
.   .   ' 1 J—oo 
hJ = 1 
(*' > J) 

x        f[        2*6(Qk)(e-**s  -1) + 
k = 1 

(MM) 

+terms that contain the product of n - 2 or fewer delta functions (3.3a) 



=    U(J(lj\Qj)) + 0(n-2)      £      {JdimJdilQj)}        II       (J(lk\Qk)) + 

+terms that contain the product of n — 2 or fewer delta functions, (3.3b) 

where 9(n) = 1 for n > 1 and 6(n) = 0 forn < 0, and we have introduced the notation that 

for any two functions A and B 

{AB} = (AB)-(A)(B) - (3.4) 

is the correlated part of the average of their product. 

The significance of grouping terms in the average (J{ji\Qi) • ■ ■ J(fn\Qn)) according to 

the number of delta functions they contain stems from the fact that the diagonal elements of 

the functions rh(q\k) and h(q\k) denned by Eqs. (2.8d) and (2.8e) are proportional to r/-1: 

m(q\q) = -K      n(q\q) = *°&. (3.5) 

This result together with the result given by the first term on the right hand side of Eq. 

(3.3) means that each term on the right hand side of Eq. (3.2) has a contribution that is of 

0(77°). Thus, in order to obtain the contribution to (B(q\k)) that is of zero order in 7/ we 

have to sum the contribution of this order in each of the terms on the right hand side of Eq. 

(3.2). To obtain this contribution it suffices to replace the average in each term on the right 

hand side of Eq. (3.2) by the product of the averages of the individual factors, according to 

Eq. (3.3b). In this way we obtain 

(B(q\k)){0)    =   27r6(q-k)[l-X(k) + X(k)2----]a(k), (3.6) 

where we have used the results that 

(m(q\k)) = 2TT% - k)[-^-} (3.7a) 
7? 

with 

X(k) = e-aWO-ooW)2«2 _ 1? (3t7b) 



and 

(A(q\k)) = 2*6(q-k)[?&], (3.8a) 
V 

with 

a(Jfc). = Mk)[e->ia{k)+ao(k))2S2 ~ e-^-a°W2s2}. (3.8b) 

It follows that 

(B(q\k)){0) = 2TT% - k)R0(k)[e-2°°WaW1' - 1]. (3.9) 

To obtain the leading contribution to (B(q\k)) that is of nonzero order in 77 we have to 

take into account the contribution to the average in each term on the right hand side of Eq. 

(3.2) from the second term on the right hand side of Eq. (3.3). Operationally, the latter tells 

us that in each term (starting with the second) we have to pair two factors and evaluate the 

correlated part of the average of their product, and then multiply the result by the product 

of the average of each of the remaining factors. Two sequences of terms arise, depending on 

whether the final factor A(pn-i \k) is one of the factors in the pair whose product is averaged, 

or whether it is one of the factors that is averaged separately. The contributions to (B(q\k)) 

from these two sequences are both of 0(T7
2
), and are given by 

<£(#))(«)    =    V2[l-X(q) + X(q)'----}r ^{m(q\p)x 
J-<x> ZTT 

x[l-X(p) + X(p)2----]A(p\k)} (3.10a) 

and 

(£(#)>(22) = V2[l ~ X(q) + X(qf -■■■} /_" ^{m(q\p) X 

x[l - X(p) + X{pf }m(p\k)}[l - X(k) + X(k)2 ]a(k),      (3.10b) 

respectively. With the use of the definitions of A(q\k) and m(q\k) given by Eqs.  (2.8), the 

definitions of X(k) and a(k) given by Eqs.   (3.7b) and (3.8b), respectively, and the result 

8 



that 

{J(fi\Qi)J(f2\Q2)} = 2TT8(Q1 + Q2)e-^
+^s2 f°° du e-^e-^^w{\u\) _ ^   {3n) 

J—oo 

we can rewrite Eqs. (3.10) compactly as 

(B(q\k)){21)   =   2Tr8{q-k)r}
2\e-2a^a^s2N{k) + R0{k)M{k)]        .    (3.12a) 

and 

(B(q\k)){22)   =   2TT% - k)V
2[e-2a^a^s2 - l}R0(k)M(k)., (3.12b) 

respectively, where 

M(k)   = '   r ^m{k\p)m{p\k)e-{a^-a^^a^-a^k^52 x 
J—oo 2TT 

/oo 
due",'(;£-p)"[e-(a(':)-ao(p)H«(p)-«o(fc))52w(|„|) _ ^ (3.13a) 

-oo 

N(k)   =    f°° ^m(k\p)h{p\k)e^a^-^k^a^+a^k))62 x 
J-oo 2ir 

/oo 
due~i{k~p)u[e~(a{k)-a^p^a^+°^k^s2w(\u\) - l|. (3.13b) 

-OO 

With the use of Eqs. (3.1), (3.9), and (3.12), we obtain the result that 

(R(q\k)) = 27r6(q-k)r(60), (3.14) 

where 

r(60)   =   f-2(^)2coseo(cos2e0-^)^ j ecos 90 - (cos2 0O - 77)? 

[ e cos 00 + (cos2 ^0 — 77)2 

+ »7 + o(r]2)    ,   (3.15) 
(io   .      \      ecose0-(cos2e0-T])l/rfLü 
- sin 0o   H ^-M   - 

Vc /      ecos0o + (cos20o-r/)=      ^c 

and we have used the fact that k = (w/c) sin 0O-   When the result given by Eq.   (3.14) is 

substituted into Eq. (2.2a), the contribution to the mean drc from the coherent component 

of the scattered x-rays becomes 

(w)     = W-" WW, (3-16) 
coh 



where the reflectivity R(0o) is given by 

R(0o) = |r(ö0)|
2. (3.17) 

4. Incoherent Scattering 

When we substitute Eq. (2.6) into Eq. (2.2b) we find that the contribution to the mean drc 

from the incoherent component of the scattered field can be expressed equivalently as 

\d9°/incoh        L^XCCOSÖo 

To obtain (|i?((7|A:)|2) we square the modulus of the right hand side of Eq. (2.9), and average 

the resulting series term-by-term: 

(|£(#)[2)    =    ti*(A(q\k)A'{q\k)) + 

dri /°°  rir-i 
_eo2^m"(9|r1M'(r1|fc)> + 

+{J1 d^m^\pM{p^)A\m)\ + ■■■ (4.i 

From the explicit expressions for A(q\k) and m(q\k) obtained from Eqs. (2.8a)-(2.8c), we 

see that the coefficient of rf1 on the right hand side of Eq. (4.2), where n > 2, is the 

sum of n — 1 terms of which the mth contains the average of a product of m J(7|<5)'s and 

n — m J*(~f\QYs. These averages are very similar to the average of a product of n J{j\QYs 

encountered in obtaining the average (B(q\k)). They consist of the product of the averages 

of the n individual factors, plus the sum of terms in which two factors are paired, and the 

correlated part of the average of their product is multiplied by the product of the averages of 

the remaining n — 2 factors, and so on. Since what we really need is not (|f?(<jr|&)|2) but the 

difference (|f?(g|A:)|2) — |(ß(g|/j))|2, the first category of averages described can be omitted, 

since it does not contribute to this difference. The second category of averages does, but 

only if one of the factors in the pair whose correlated average is evaluated is unconjugated 

while the second is complex conjugated.    The n — 2 delta functions associated with the 

10 



product of the averages of the remaining n — 2 factors that are unpaired yield a result that 

is proportional to l/r]n~2 which, combined with the factor of r)n multiplying the nth order 

term produces a contribution of 0(r]2) to (|i?(g|A;)|2) — |(i?(<jr|/;))|2 from each term on the 

right hand side of Eq. (4.2). Thus, an infinite series of terms must be summed to obtain the 

contribution to (|i?(<?|A:)|2) — \{B(q\k))\2 of the lowest nonzero order in rj, namely the second. 

Four classes of terms contribute to (|#(<7|Ä;)|2) - \(B(q\k))\2 in this order, defined by the 

two factors that appear in the pair whose correlated average is evaluated. They can be 

written schematically as {./L4*}, {mA*}, {Am*}, and {mm*}. These four categories of terms 

can be summed to yield the result that to 0(T}
2
) 

(\B(q\k)\2) - \(B(q\k))\2 

= i/a[[l - X(q) + X(q)2 - ■ ■ ']{A{q\k)[l - X*(q) + X*(q)2 - ■ ■ -]A*(q\k)} + 

+ [1 - X(q) + X(q)2 - ■ • -]{m(q\k)[l - X(k) + X(k)2 - ■ ■ -]a(k) X 

x[l-X*(q) + X*(q)2-...}A*(q\k)} + 

+ [1 - X(q) + X(q)2 - ■ ■ -]{A(q\k)[l - X*(q) + X*(q)2 - ■ ■ >*(#)} X 

X [1 - X*{k) + X*(kf ]a*(k) + 

+ [1 - X(q) + X(q)2 - ■ ■ -]{m{q\k)[l - X(k) + X(k)2 - ■ ■ -}a(k) X 

X [1 - X*(q) + X*{qf - ■ ■ -]m*(#)}[l - X*{k) + X*{k)2 - ■ ■ .}a*(k)] 

= ^li + ^Ni + ^Wl2^^1^1 + X{k)) + m{qlk)a{k)] x 

X [A*(q\k)(l + X*(k)) + m"(q\k)a"(k)]}, (4.3) 

where the curly bracket symbol has been defined in Eq. (3.4). With the use of the explicit 

expressions for X(k) and a(k), Eqs. (3.7b) and (3.8b), respectively, we can rewrite Eq. (4.3) 
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in the form 

(\B(q\k)\2) - \(B(q\k))\2 =^eße(a(,)-ao(g))252
eÄe(a(fc)-a0(fc))252  x 

x{[e-^
a2W+"oW)«2

fe(g|fc)][e-j(«2W+^W)^6(g|fc)]*}, (4.4a) 

where 

b(q\k)   =   cosh(a(k)a0(k)62)[n(q\k) + m(q\k)R0(k)} + 

+ smh(a{k)a0{k)62)[n{q\k) - m{q\k)Ro(k)}. (4.4b) 

As it stands, the result given by Eq.   (4.4) is not reciprocal.   Reciprocity, which is a 

consequence of the Lorentz reciprocity theorem [16], requires that the scattering matrix 

S(q\k) defined by 
i 

S(q\k) = ^-R(q\k) (4.5) 
aUk) 

must satisfy the relation 

S(q\k) = S(-k\-q). (4.6) 

In view of Eq. (2.6) this condition requires that 

(\B(-k\-q)\2)-\(B(-k\-q))\2 

= ^i(\B(q\k)\2)-\(B(q\k))\2). (4-7) 

The result given by Eq. (4.4) does not satisfy this condition. 

However, it is possible to transform Eq. (4.4) into a form that is manifestly reciprocal. 

We begin by noting that with the use of the expansion of J(j\Q) in powers of 7, 

«/(7lQ) = EL-T-7"C(n)W), (4-8) 
n=l n 

where 

({n)(Q) = dxle~i^C{xl), (4.9) 
J—00 
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and the use of the relation 

,.2/L\ 2/- W 

al{k) = a2{k) + r}—, (4.10) 

together with the fact that e = 1 - 77, we find that 

nm+m(qlh)Mk)-_ ^-ywj-K.cgj«-*)^+ow   (,lla) 

n(#)_m(9lww.ygg-V+0(„.  (uib, 
Since we seek a result correct to the lowest order in 77, we neglect the corrections to these 

results of 0(r)). It follows, therefore, that 

_ qk - a(q)a(k) J(a(q) + a(k)\q - k) 
d(q)d(k) a(q) + a(k) * 

x [(ao(ife) + a(k))e-^aW-a°V<»is2 + 

+ (a0(k) - a{k))e-^a^+Q0^2s2] 

= gfc - a(g)a(fc) J(a(g) + a(fc)|g - fc) 
d(q)d(k) a(q) + a(k) * 

x x[2a0(*) - (a»(fc) - a»(*)) £ 1 (-^-J 

x [(<*(*) - ao(Ä;))2'1-1 - (a(fc) + ao(fc))2"-1]]. (4.12) 

However, in view of Eq.   (4.10), the second term in brackets is of 0(7/) and we neglect it. 

Thus, finally, 

(\B(q\k)\2) - \{B{q\k))\2 = ^eRe(a(q)-ao(q))HeRe(a(k)-a0(k))^  y 

J(a(q) + a(k)\q - k) J*(a(q) + a(k)\q - k) ) 
a(q) + a(k) a*(q) + a*(k)        J 

2a0(^ ~ ^^ d(q)d{k) 
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In this form, the reciprocity condition (4.7) is manifestly satisfied. 

With the result that 

{J(l\Q)J*(7\Q)}   =   Za e-^"**8)«9 /~ Aie-«"[eMw<M) _ i], (4.14) 
J—oo 

together with the result given by Eq.   (4.1), we can write the contribution to the mean 

differential reflection coefficient from the incoherent component of the scattered x-rays to 

0{V
2) as 

dR\ 0   1    fua\     1     Ä (u8\ 
2n        (g-k)2"2 

™) =   ,»   >    (-)    1    E   Ü      f^|j,(,.lftl)|.,      (4,5a) 
, "»I incoh 80F V   C  y  COS Ö0 ^ V  C  / n!V" 

where 

xe= 

x: 

£|(f ^[(co^fl.-^i-cosfl.pgK^)2««»2^,-,)*-«»^]2  x 

. sin 0S sin 0O - (cos2 6>s - 77)2 (cos2 6>0 ~ T?)* 
<2cos0s 1 -L— - —2cos0o x 

[ecos0s + (cos2 6S — T])2][tcos90 + (cos2 90 — 77)2] 

x[(cos2 0,-77)2 + (cos2 0o- V)2]n_1- (4.15b) 

In obtaining the result given by Eq. (4.15) we have used the Gaussian form for the surface 

height autocorrelation function given by W(|ti|) = exp(—u2/a2). 

We can simplify Eq. (4.15) somewhat if we note that 

(COS
2
0CM-#-COS0O,S = - — Z^i —• (4.16) 

(cos2 V0,s - V)2 + COSÖo.s 

Consequently, we can replace the second and third exponential factors on the right hand side 

of Eq. (4.15b) by unity, in the approximation we are maintaining here. These replacements 

are equivalent to the assumption thed, (UJ8/c)Jr](u) <C 1. We can also replace the explicit 

factors of e in the denominator of Eq. (4.15b) by unity to the same degree of approximation. 

As a result, we obtain finally 

k{6sM = e-K*)W •.-->>*+(«**-.»)*]' x 
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sin6s sin60-(cos2 6S-T])2(cos2 60-T})2] 
x 2 cos 0S - 1 J— :—      i 2 cos 0O x 

[COS #s + (COS2 0S — 7/) 2 ] [COS #o + (COS2 0Q — T]) 2 ] 

x[(cos20s-77)2- + (cos20o-#]n-\ (4.17) 

In this form, Eq. (4.17) also applies to the scattering of x-rays of s—polarization when both 

0O and 0S are close to 7r/2, SO that the factor sin#s sin0o — (cos2 0S — ^^(cos2 0O — v)1^2 1S 

close to unity. 

5. Results 

In Section 3 we have obtained explicit expressions for the contributions to the mean scattering 

amplitude (R(q\k)) that are of zero and second order in T](U). The contribution to the 

reflectivity from the zero-order term, obtained from Eqs. (3.15) and (3.17), 

2 

R(öo) 
e cos 0Q — (cos  0o — rj) 2 ,-4(t£)2cos6oRe(cos2e0-v)% (5 j\ 

ecos 0O + (cos2 0o — v)2 

has the form of the Fresnel reflectivity multiplied by a factor similar to the Debye-Waller 

factor, and coincides with the result obtained in [6,7]. However, while in [6,7] this result was 

obtained in the first-order distorted wave Born approximation as an approximate result (the 

so-called "q-qt" expansion), valid only for relatively weakly rough surfaces, (8/X) cos 0o < 1, 

we have summed all the terms in the perturbation series for the mean scattering amplitude 

which are of zero order in T)(UJ) without imposing any restrictions on the rms height of the 

surface beyond the one implied by our adoption of the Rayleigh hypothesis. 

For a lossless medium the reflectivity given by Eq. (5.1) becomes equal to unity when 

the angle of incidence 0O is equal to or greater than the critical angle for total internal 

reflection 0O = cos-1 y/rj, at which the term (cos2 öo — f?)2" goes to zero and then becomes 

pure imaginary for 0C < 0O < 7r/2. This is because the Fresnel reflectivity is unity in this 

range of angles of incidence, while the exponent of the "Debye-Waller" factor vanishes. In 

Fig. 2(a) the reflectivity given by Eq. (5.1), calculated for a one-dimensional, randomly 

rough gold surface, is plotted for different values of the roughness parameters, as a function 
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of the grazing angle of incidence 6Q = TT/2 — 6Q. We see that it is equal to unity for 60 < 8C, 

where 6C is the grazing critical angle for total internal reflection, and then decreases rapidly 

for 60 > 6C, the rate of decrease increasing with increasing surface roughness. 

The lowest order correction to the reflectivity given by Eq. (5.1) is of second order in IJ(L>), 

as can be seen from Eqs. (3.15) and (3.17). Although this correction is small, it is important 

because it describes the decrease of the reflectivity from unity in the regime of total internal 

reflection. In addition, since this correction depends on the surface height autocorrelation 

function Wd^l), in contrast with the result given by Eq. (5.1) which does not, and which 

can therefore be used to determine only the rms height of the surface, an experimental 

determination of it affords the possibility of determining jy(|a:i|), or at least the transverse 

correlation length a of the surface roughness.    In Fig.    2(b) we have plotted 1 — R(90) 

lo° 
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8 = 2X, a = 20^ 
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e0 [deg] 
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0.6 

Fig.2 (a) The reflectivity (5.1) of a one-dimensional randomly rough gold surface illuminated 

by p-polarized x-rays of wavelength A = 1.54Ä, as a function of the grazing angle 

of incidence $o = fl"/2 — $0. The surface roughness is characterized by a transverse 

correlation length a = 20A, and two values of the rms height 8 = A,2A.   (b) A plot 
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of 1 — R(60) for grazing angles of incidence smaller than, and a bit larger than, 6C, 

calculated by including both the zero- and second-order terms in Eq. (3.15) in the 

evaluation of Eq. (3.17). 6e = 0.52°. 

for grazing angles of incidence 60 smaller than, and a bit larger than, 6C, calculated by 

including both the zero-order and second-order terms in r](u) in Eq. (3.15) in the evaluation 

of Eq. (3.17). This decrease, as might be expected, is larger the rougher the surface. 
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Fig.3 The contribution to the mean drc from the incoherent component of the scattered 

x-rays as a function of the grazing scattering angle 9S = T/2 — 6S, when p-polarized 

x-rays of wavelength A = 1.54Ä are incident on a one-dimensional randomly rough 

gold surface characterized by an rms height S = 2A and a transverse correlation length 

a = 20A, (a) for several grazing angles of incidence #o and (b) for a fixed grazing angle 

of incidence 6Q = 0.4° for several values of the roughness parameters. 

We now turn to the contribution to the mean differential reflection coefficient from the 

incoherent component of the scattered x-rays, given by Eqs.  (4.15a,b ) and (4.17).  It has 
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been calculated to the lowest order in 77(u>) (the second), and its reciprocal form, given by 

Eq.(4.17), has been derived in the limit (8/X)JTJ(üJ) <C 1. In this form our result differs only 

by the factor sin 6S sin 0O — (cos2 6S — 77)2 (cos2 60 — 77)2 from the results obtained in the first- 

order distorted wave Born approximation, or the modified Born approximation, in the limit of 

a weakly rough surface (S/X) cos Ö0<1 [2,6]. As in the case of the reflectivity, our result for 

the incoherent scattering is not limited by this condition. However, at small grazing angles of 

incidence and scattering where our results coincide with the results of the first-order distorted 

wave Born approximation, or the modified Born approximation, the two limiting conditions 

are practically identical, because for such angles cos#o,s < yVi10)- We note, however, that 

the expression (4.15b) remains valid even when the inequality (8/\)Jrj(u>) <C 1 breaks down. 

In Fig. 3(a) we plot the contribution to the mean differential reflection coefficient from 

the incoherent component of the scattered x-rays as a function of the scattering angle for 

different grazing angles of incidence, and in Fig. 3(b) for different values of the roughness 

parameters. The plots show the sharp asymmetric peak at 6S = 6C, called the Yoneda peak 

[3]. It is easy to see that this peak arises from the sharp feature at 6sß = 0C in the factors 

\2cos$Sfl/[e(u)cos6Sß + Jcos26St0 — 77(0^)|2 present in the function bn(9s,90), which are the 

Fresnel transmission coefficients that determine the field at the surface. 

6. Conclusions 

In this work we have presented a simple reciprocal theory of the scattering of x-rays from a 

one-dimensional randomly rough surface. This has been accomplished by solving the reduced 

Rayleigh equation for the scattering of electromagnetic waves from such a surface not as an 

expansion in powers of the surface profile function, but as an expansion in powers of the small 

parameter r}(u) = 1 — t(u>). However, in carrying out this expansion we have been careful not 

to expand the functions a(k) = (o»/c)(cos2 OQ — TJ)^ and a(q) = (u)/c)(cos2 6S — 77)2 appearing 

in the solution in powers of 77. This is because it is the vanishing of these functions when öo 

and 6S equal the critical angle for total internal reflection at the interface between vacuum 

and the scattering medium, 6C = cos-1772, and their transformation into pure imaginary 
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quantities for 60 or 0S greater than 6C, that gives rise to the Yoneda peak in the angular 

distribution of the intensity of the x-rays scattered diffusely. 

The results obtained here are valid at small angles of incidence and scattering, like the 

results of the Born approximation but, unlike the results of the Born approximation, are also 

valid in the vicinity of the critical angle for total internal reflection 6C. In their validity for 

small grazing angles of incidence and scattering, our results also contrast with the results of 

the distorted wave Born approximation. 

Although the derivation of the results obtained here has been carried out in the context of 

the scattering of electromagnetic waves from solid surfaces, the results of the corresponding 

theory for two-dimensional random surfaces can also be applied to the scattering of x-rays 

from liquid surfaces, if the corresponding power spectrum for the surface roughness is used. 

The latter has the form [17] 

«7(|£|||)   =   |d2X||W(|x|||)e-'Vl 

kBT 0(kc - fy) 

where W(|x|||) is the surface height autocorrelation function, 7 is the surface tension of the 

liquid at the absolute temperature T, kß is Boltzmann's constant, and K = {gp/j)? is the 

gravitational cutoff, with p the mass density of the liquid, and g the acceleration due to 

gravity. 6(x) is the Heaviside unit step function, and the wavenumber kc is the upper wave 

vector cutoff for the thermally excited surface waves (surface ripplons) whose amplitudes 

roughen the liquid surface. The value of kc is of the order of the reciprocal of a few atomic 

diameters [18]. 

Finally, it seems likely that the approach used here, namely the expansion of the scat- 

tering amplitude in powers of TJ(UJ), may also be useful in theoretical studies of the multiple 

scattering of electromagnetic waves incident from one dielectric medium onto a randomly 

rough interface with a different dielectric medium, when the difference between their dielec- 

tric constants is small, of the order of a few tenths, say. In such a case the leading corrections 

to the term of second order in T)(LV) obtained here for the contribution to the mean differ- 
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ential reflection coefficient from the incoherent component of the scattered electromagnetic 

field may be sufficient to predict the enhanced backscattering of light from such interfaces 

that has been observed in the results, of computer simulation calculations when the medium 

of incidence is the optically denser medium [19]. The dielectric contrast would then serve as 

a new small parameter in theory of the multiple scattering of electromagnetic waves from 

such interfaces. 
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Coherent Effects In Closed Systems With Rough Boundaries 

V. Freilikher 
The Jack and Pearl Resnick Institute of Advanced Technology 

Department of Physics, Bar-Han University, Ramat-Gan 52900, Israel 

In this presentation we consider theoretically the statistics of a wave field inside a totally 
closed system (microwave or acoustic resonator, or quantum dot) with randomly rough 
boundaries. The study is carried out in the framework of the random matrix theory (RMT) 
approach. 

RMT is a powerful and very general non-perturbative method for the exploration of the 
statistical properties of complex random systems. The starting point (and one of the most 
complicated and nontrivial steps in the method) is to map the initial microscopic physical 
problem onto its random-matrix analogue. When the mapping is done, one can use many of 
the results known in RMT. 

The central observation of random matrix theory that allows mapping a microscopic 
electrodynamic or quantum problem onto an RMT-model is that many physical properties of 
a real system described by a microscopic Hamiltonian 7i with eigenlevels cn can be reproduced 
by studying ensembles of TV x N random matrices H with the same eigenvalues M. These 
random matrices should reflect the underlying symmetry of the system under study, i.e. of 
the microscopic Hamiltonian 7{. At the present time the most studied are random matrix 
ensembles corresponding to systems with time reversal symmetry, and with broken (for 
example, due to absorption or a magnetic field) time-reversal symmetry. In the RMT it is 
common to denote these cases by a parameter ß that is equal to 1 and 2, respectively. 

What about the eigenfunctions in this approach? To clear up this issue let us consider the 
wave equation for a closed system, which in its most general form reads 7i^n (r) = en^n (r), 
and diagonalize the corresponding random matrix H according to H = UEU\ where E is a 
diagonal matrix diag (el5..., t^). Since HU = UE, or J2^=\ HikUkj = tjUij, we can rewrite 
this equation in a different form by defining f/,j = (j>j (i) and making the replacements i —> r, 
k —* r'. Then we get Hff=1 HTT>(f)j (r') = tjfa (r). Comparison of this equation with the 
initial one implies that the <f>j (r) play the role of the eigenfunctions of the initial microscopic 
problem provided that the space is divided into N boxes with radius vectors r that are 
numbered from 1 to N. In what follows it is more convenient to deal with the normalization 
fixed by the identity #n (r) -♦ (N/V)1/2 U£\ where U{ß) is the real orthogonal (/? = 1) or 
unitary (ß = 2) matrix that diagonalizes H ^. In the mapping described above the averaging 
over random surface roughness is replaced by averaging over the ensemble of random matrices 
of Wigner-Dyson type M. 

We consider the time-space evolution of a pulse (wave packet) radiated by a point source 
located at a point r' inside a cavity with perfectly reflecting randomly rough boundaries. 
The field of the pulse $(r,r';t) is described by the wave equation 

$ {r,r';t) = 4x8(r - r') A(t), 



with the condition $ (r, r'; t) = 0 at the boundaries. 
The average intensity (I(r,r';t)) = (|$ (r,r';t) |2) can be written as the integral 

(/ (r, r'; t)) = j^- J düdVe«^ (G (r, r';ft) G* (r, r'; ft')) V («) <P * («') •        (1) 

Here 
y?(ft) = JdteiUtA(t), 

and G (r, r', ft) obeys the equation 

A + ^G(r,r';fi)=47r5(r-r') 
c2 

The correlator Pß(r, r'; ft, ft') = (G (r, r'; ft) G* (r, r'; ft')) can be expressed through the exact 
eigenfunctions ^n (r) of the system with eigenlevels wn, provided that 

G (r, r ; ft) = ^ —  a Hi _ id + JO ' ^ 

Then the quantities that we have to calculate are mapped onto the RMT-model described 
above: 

VA2N2 /^^ U^U^]U*^U(ß\ \ 
f,(r,r-,n,no = ^(EE[aj_^+

y7ol^_^_i0l)      •      (3) 

where V is the volume of the system, A is the mean level spacing, and 

Here df/^ is the Haar measure of the orthogonal or unitary group U^ (N), e,- = w2/c2, 
Pß({e}) = z n«<j le«' — ej\ Ilili e*p{ —ßV(ti)}, and V (e) is the so-called strong confine- 
ment potential that behaves as or stronger than |e| at infinity. 

After the mapping has been carried out, i.e. after the ensemble average (G (r, r'; ft) G* (r, r'; ft')) 
has been replaced by its RMT analogue Eq. (3) the following calculations become quite tech- 
nical. 

We sketch the RMT procedure below. 
Since integration over the U^ (TV)-group and integration over eigenlevels can be carried 

out independently we can write in the large-N limit that 

1       N2 

J dU^U^U^U^U^l = ij {Snm + (1 + 6PtlSnm) Srr,} , (5) 
[/ dWft] V2 

postulating the existence of the Wick theorem. Then 

Pp (r, r'; w) = ± {a (w) + 6„, [b (w) + SßAa (w)]} , (6) 



where 

v  '     2w(w + tO)L       V        2/ V        2/J     w + eO 2?r (w + iO) 

In equations (7) and (8) 

glr)W = {TrE=WT*>) RME 

(7) 

(8) 

(9) 

is the one-point Green's function in RME, and 

c"> v.*) = (rr^-^r,^-^) 
RMT 

(10) 

is the two-point Green's function M; p,p' = ±1 . 
The mapping used above leads to the conclusion that the time dependence in Eq. (1) is 

governed by the equation 

J(r,r';*) =  <l + S„, ^+5/s«-^(*+i-*-|)]}-    <"> 
Making use of the definition Eq. (10) of the two-point Green's function it is easy to see that 

du>    .•.,,„/,   \ f „     u>   „     w\      27T r       ,    /tAs 

/^>+^-!)=?H*S 
where 

b <ß(z) = J^-tSZYy>(s) r(ß) 

is the Fourier transform of the two-level cluster function, so that 

I (r, r'; t) = £ {l + <5rr< [^ + 1-6, (£)] } 

Equation (14) can be rewritten in the form 

1 
I(r,r';t) = -{l+8rT,Cß(z)}, 

with 

d(z) = l + z[2- In (1 + 2z)\ 6 (1 - z) + 2-zln 
2z + l 
2z-l 6(*-l), 

C2{z) = zQ(\- z) + e(z-l). 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

Equations (15) and (16) describe the time evolution of the field intensity in the resonator. 
In particular, the stationary distribution is given by 7(r,r';oo) = pr {1 + 36rr<}, which for 
r=r' (at the point where the source is located) gives a factor of 3 enhancement, which 



is in good agreement with the results of numerical simulations of the acoustic field in a 
reverberation room with rough walls ^. 

If we deal with electrons in a quantum dot, then a magnetic field can break time-reversal 
symmetry, and therefore destroy partially the coherence of the scattered fields. This results, 
in accordance with Eq. (17) (ß = 2), in a decrease from a factor of 3 to a factor of 2 in the 
coherent enhancement at the point r=r' . 

The spatial correlations of the eigenfunction intensities in a closed system can also be 
computed in the RMT formalism. 

1) The distribution function Pß (v) of eigenfunction intensities is defined as 

Pß(v) = A(Y,6{v-V\yn(r)\2)8(E-en))~  , (18) 
\ n / dis 

and is given by 
ä £_ 

ßvy        /  ßv 

2) The joint distribution function of the eigenfunction intensities at two different spatial 
points 

Pß(v,v';r,r') = A/^8 (v -V \<Hn(v)\2) 8 (v' -V\^n(r')\2) 8(E - en)\ (20) 
\   n I dis 

is given by the formula 

Pß (v, v'; r, r') = Pß (v) Pß (v') + 8rr,Pß (v) [8 (v - v') - Pß («')]. (21) 

3) The conditional probability which describes the distribution of the wave function at a 
point r', v' = V |#n (r')| , provided v = V \^n (r)|2, is expressed as 

Pßv («'; r, r') = P/?(p'^,r,) = Pß (v') + 8TT> [6 (v - v1) - Pß («')]. (22) 
rß (v) 

Then we can calculate the conditional averages (v')v and l(8v')2)   = Uv' — (v')v)2\   : 

(v>)v = l+6rr,(v-l),    {(8v')2)v = -ß{\-8rT,). (23) 

As can be seen, the conditional average (v')v is independent of the symmetry parameter ß, 
and therefore we cannot distinguish the symmetry of the system from this quantity alone. 
In contrast, the study of the variance ((8v')2) tells us about the system symmetry due to 

the parameter |. Thus, fluctuations become weaker with symmetry lowering. 
To conclude, the statistics of the wave field in closed systems with rough boundaries 

has been studied in the framework of the RMT approach. It is shown in particular that 
a "residual" coherence of the scattered fields manifests itself in the enhancement of the 
stationary distribution of the intensity of the wave packet at the point where the source is 
located. The height of the enhanced peak depends on the time-reversal symmetry of the 
system. 
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During the past several decades, extensive research has been conducted on radar 
detection and identification of a target embedded in clutter. When the clutter is located 
close to the target, the desired target return is masked by the clutter return, and 
discrimination becomes very difficult. This is particularly true if the target is not moving 
and Doppler processing, which is usually effective for detecting the moving target, is not 
applicable. A vehicle covered by a thick tree canopy is one example and a land mine 
placed on ground with a rough surface or buried under a ground cover is another 
example. Traditional radar technique which measures the backscattering radar cross 
section (RCS) at different frequencies is usually unable to discriminate a target response 
from that of the clutter. More advanced radars, including polarimetric, transient, and 
bistatic radars, have been tried with mixed success. 

In this paper, we will discuss a new technique based on the angular correlation 
function (ACF) measurement for target detection in a homogeneous medium formed by 
sand particles. We evaluated the effectiveness of this approach by performing millimeter- 
wave experiments on the ACF measurement for the detection of a long conducting 
cylinder (diameter « I A) perpendicularly oriented to the plane of incidence. The cylinder 
was buried at a depth of about \A below the sand medium which has a flat sand-air 
interface, as shown in Fig. 1. Our results indicate that by measuring the ACF 
corresponding to an appropriate set of incident and scattering angles, the masking effect 
of the medium on the desirable target ACF return can be minimized, thus allowing 
successful target detection. 

air 

j, sand 

cylinder ^N>N^   ' 

—i   X   H— 

Fig. 1   Scattering geometry of the experimental setup 



Recent studies showed that there is a memory effect associated with the angular 
dependence of multiply scattered waves from random rough surfaces in response to a 
change in the direction of the incident wave. This angular correlation phenomenon is 
known as the Angular Memory Effect and can be characterized by the ACF defined as 

/YM,;0;.*;; = <£/MJ£;W.$;;> where r(-) represents the angular correlation between 
the reference scattered wave observed at 0S due to an incidence at 0/ and the variable 
scattered wave observed at 0/due to an incidence at 9;' with angle brackets denoting an 
ensemble averaging operation. In general, the ACF or rough surface is negligibly small 
because of the phase cancellation due to multiple scattering, but becomes significant 
when the difference in the transverse wave numbers is the same for the incident and 

scattered waves. This condition can be stated as k(sin e\ - sin 0i) = k(sin0;- sin 6<j. For a 

given pair of reference antenna positions (Oj,0J, the ACF is, therefore, almost zero 
everywhere except along the line (the angular memory line) on the sin0j'-sin&s' plane. 
The lateral width of this line is narrow and is on the order of A/L, where L is the 
illumination width.  In our experiments,  A/L  is smaller than   1°,  indicating rapid 
decorrelation away from the angular memory line. Since rough surface ACF is most 
significant when measurement is made along the angular memory line, in order to 
minimize the masking effect of the medium on the desirable target ACF return in the 
combined scene (medium together with the target), measurement should be made along a 
line (the scan line) which is perpendicular to the angular memory line. In this study, this 
scan line was chosen to be a straight line intersecting perpendicularly with the angular 
memory line at the reference antenna positions (0/ = 20°, 9S = -40°). These two lines are 
shown in Fig. 2. 

sind' 

Fig. 2   The angular memory line and the scan line 

We have conducted wideband millimeter-wave experiments to evaluate the 
effectiveness of this correlation technique for the detection of a target in a homogeneous 
medium. At 75-110 GHz, a long conducting cylinder (diameter « U) was buried at a 
depth of about \A below a homogeneous medium formed by very fine sand particles with 
a flat sand-air interface. The size of the sand particles was chosen so that the dominance 
of surface scattering over volume scattering can be justifiably assumed. An ACF 
measurement based on one single spatial sample was then made along the scan line. 
Experimental results with and without a buried target will be presented. 
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Two calculations are presented: 

1) A perturbation theory study is made of the angular and frequency correlations which exist 
in the speckle pattern of light scattered from 1-d and 2-d weakly rough, random metal 
surfaces. 

2) The surface profile and the power spectrum of the surface roughness are extracted from 
scattering data for weakly rough, random metal surfaces using Reverse Monte Carlo 
methods1 and perturbation theory results for the differential reflection coefficient of such 
surfaces. 

In both calculations we consider weakly rough Gaussian random surfaces described by surface 
profile functions {<; (x,)} in 1-d and {; (x„ x2)} in 2-d. The surfaces are planar on average with 
x3> Q (x,) or Q (x„ x2) being a vacuum and x3 < c, (x,) or c, (x„ x2) being a region of metal with 
dielectric constant e = e, + ie2 where e,<-l. (For the specific results we present we have 
considered silver and gold surfaces illuminated by light of wavelength 4579 Ä and 6120 A, 
respectively.) In studies of the 1-d rough surfaces we use the perturbation theory approach 
developed for such surface by McGurn, Maradudin and Celli.2 In studies of 2-d rough surfaces we 
use the perturbation theory approach developed for such surfaces by McGurn and Maradudin.3 Both 
of these approaches are ultimately based on a general theory of rough surface scattering formulated 
by Brown et al.4 

In the speckle correlation calculations, 1) above, we compute the correlation function 

C(q,q',k,k')  = tfl(q|k)  - (i (qjk)))(l (q'lk')  - (l(q|k)»)" 
=  16a0(q)a0(q')a0(k)a0(k') ((|G(q|k)|2  - (|G(q|k)|2)) (|G(q'|k')|2  - (|G (q'|k')|2))) 

where < > represents an average over surface profile functions; q, q', k, k' are the wavevector 
components of light which are parallel to the mean surface; I (q |k) is the intensity of light scattered 



with q for light of incident unit intenisty with k; a (r) = 0) 
- r ; and G(q | k) is the Green's 

function for the propagation of surface polaritons along the random surface. The function C(q, q', 
k, k') gives the correlation between light incident with k scattered into q and light incident with k' 
scattered into q'. If the light in each of these two scattering is of different frequency then C(q, q', 
k, k') also describes the frequency correlation. 

The correlation function C(q, q', k, k') can be represented as a sum of four parts C(1), C(2), C(3) and 
C<R) QW is a "memory effect" part which vanishes unless q - k = q' - k'. C(2) is a long range 
component which is non-zero for general q, k, q' and k', but goes to zero as q - q' - °° and/or 
k - k'-» °°. C(3) is an infinite range component which is non-zero for general q, k, q' and k', but is 
relatively independent of q - q' and k - k'. C(R) are some remaining terms which are found to be 
important in surface scattering, and contain new features in C arising from resonant scattering 
processes involving surface polaritons. This last effect is specific for C from surface scattering. 
Results for C(1), C(2), C(3) and C(R) are presented for 1-d p top scattering and 2-d p top, p to s, 
s to p and s to s scattering. 

In computing C(1), C(2), C(3) and C(R) a diagrammatic approach is used involving sums of ladder 
diagrams which in the absence of dissipative losses (e2 = 0) reduce to diffusion poles and sums of 
maximally crossed diagrams which give rise to time-reversed phase coherent effects. A number of 
sharp peaks are found in C(1), C(2) and C(R) studied as functions of q and q' for fixed k and k'. These 
peaks are correlated with various phase coherent time-reverse processes, multi-photon processes 
involving surface polariton and memory effects. The width of the peaks in C(1), C(2) and C(R) are 
found to be directly related to the decay length for the propagation of surface polaritons along the 
random vacuum-metal interface. 

C(q, q', k, k') is computed for two types of surface. The first type is a Gaussian random surface with 

(cfrjKCx,')) = 62exp[-|x1  - Xl'|
2/a: 

in 1 -d and 

(c(x,,x2K(x1',x2')) - 62exp 
'\2 (x,-Xlr + (x2-x2')

2 

in 2-d. 

The second type involves a Gaussian random surface with the West and O'Donnell5 step function 
form in 1-d and its generalization in 2-d. 

In Fig. (1) a sampling of results are shown for C(q, q', k, k') computed for a 2-d rough Ag surface. 



FIG. 1 

Correlation Function Results for 2-D p to p Scattering 

Results for Gaussian random surface with a2 g(k) = n oV exp [-(ka)2/4] for Ag surface with 
o = 40 A, a = 1000 Ä, X = 4579 Ä, e = -7.5 + i 0.25. Figures are shown for incident k, k' to scattered 

q, q' components parallel to the mean surface where k = — sin 6k with angle 6k measured from the 
c 

normal to the surface for; a) Cl for 6k = 20°, 6k. = -10°; b) C2, C3 and CR for 6k = 20°, 0k, = -10° 
and6q = 30°. 
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In the surface profile calculations, 2) above, data for the mean differential reflection coefficient of 
light scattered by a weakly rough metal surface is used to extract the power spectrum of the surface 
profile. Data for the differential reflection coefficient of light scattered by a ridge or groove on a 
metal surface is, also, used to extract the shape of the ridge or groove. 

Specifically, the surface profile or spectral density is extracted from experimental data using Reverse 
Monte Carlo methods based on perturbation theory results. In this method we start with a flat 
surface. A random weak perturbation is given to the flat surface and the differential reflection 
coefficient for the resulting surface is computed using perturbation theory. A x-square comparison 
is made between the scattering data and the differential reflection coefficient computed above. A 
sampling criterion based on Maximum Entropy methods is applied to the x-square results to accept 
or reject the random profile as a description of the surface. If the random profile is rejected, we 
return to the original surface before the random change and repeat the above procedure. If the 
random profile is accepted, then a random change is made in the accepted surface profile and the 
scattering results from the new profile are subjected to the x-square comparison. This procedure is 
repeated until the computed differential reflection coefficient agrees with the scattering data and the 
surface profile has been extracted. 

This type of Reverse Monte Carlo procedure has been developed only recently to extract the 
structures of amorphous and polymer materials, and has been found to be very effective when 
applied to the determination of such structures. Our work is a first application of these techniques 
to the study of rough surface geometry. 

Results for the extracted power spectra and profiles are presented for a number of different types of 
surfaces, including some recent experimental systems studied by West and O'Donnell.5 An attempt 
is made to determine the minimum amount of scattering data need and the conditions On the 
scattering data (i.e., optimum angles of incidence, number of different frequencies need) needed for 
the accurate extraction of surface profile information. In general it is found that quite reasonable 
reproductions of the surface profile can be obtained using data for just two incident angles of light. 

In Fig. (2) a sample of a power spectrum extracted from scattering data of West and O'Donnell5 by 
the RMC is compared with surface profilometry results of West and O'Donnell for the same surface. 
Excellent agreement between the two power spectra is observed. 
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FIG. 2 

Reverse Monte Carlo Results 

The power spectrum measured by West and O'Donnell (Experiment) compared to the RMC 
extraction from the differential reflection -coefficient data of West and O'Donnell (Theory). 
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Due to the tremendious development of real time control and quality tests 
for manufactured parts, the characterization of metallic, dielectric and semi- 
conductor surfaces is becoming increasingly important [1]. Classical optical meth- 
ods such as optical microscope, light sectionning [2], optical profilometer [3,4] or 
optical interferometers like FECO [5] or TOPO (WYCO Corporation) provide 
valuable tools but they can require a long processing time and, above all, they 
are not adapted to the resonance domain. The same drawbacks hold for near 
field optical microscopes [6,7]. Surface characterization based on scattered light 
analysis allows a rapid, non destructive, real time control or inspection of surface 
microtopography [8]. It needs a prior precise solving of the scattering problem, 
which can make problem in some complex cases (surfaces coated by numerous 
dielectric films, 3D problems), at least if the perturbation theory or the Kirchhoff 
approximation fail. 

The aim of the communication is to show some results obtained in the last 
20 years in characterization of surfaces from scattered field analysis in the optical 
domain. These techniques differ from the classical optical means by the fact that 
scattering is not prejudicial to the quality of the characterization but is, on the 
other hand, the basic element of the characterization process. 

The easiest kind of problem to be solved is classified as parameter adjustment. 
In that case, one has to determine the value of a few parameters. Some examples 
will be given. For deterministic surfaces, the determination of the two parameters 
of a V-shaped groove scribed in a brass plate, has been achieved at the National 
Institute of Standards and Technology ( Gaithersburg, USA ). The measurement 
of the scattering pattern was made using a piezoelectric detector rotating at a 
constant radius in the plane normal to the groove, from -90° to +80° [9] and 
the theoretical scattering patterns were obtained from a rigorous theory [10]. A 
similar achievement has been made in the field of gratings with the determination 
of the groove depth of sinusoidal holographic aluminum gratings with 1200 or 
1800 grooves/mm, using a 0.6328 mm He-Ar and a 0.4579 mm argon ion lasers, 



and a Spectra-Physics Model 404 laser power meter to measure the efficiency of 
the grating in Littrow mount [11]. The experimental data was compared with 
results from a rigorous theory of diffraction gratings [12]. In a problem linked 
with the technology of CMOS in microelectronics, the process of oxide refiow of 
glass in an oven was controlled by printing in a corner of the sample a small 
grating, the efficiency of which was measured in real time during the process 
[13]. L.R. Baker proposed a vary peculiar method for measuring the height of 
a step made in a dielectric or metallic plane [14]: the scattering pattern of the 
step to be characterized was compared with that generated by a set of steps of 
known heights. For randomly rough surfaces, the determination of the rms can 
be achieved from a measurement of the total integrated scatter [15, 16]. 

The inverse scattering problem, where the unknown is a function, is much 
more difficult to solve since, in addition to the solving of the direct scattering 
problem, one must face a dramatic mathematical and numerical difficulty: the 
inverse problem is ill-posed in the sense of Hadamard. Fortunately, the cleaver 
solution proposed by Tikhonov and classified as "regularization of ill-posed prob- 
lems" can provide a very accurate tool for the solution of inverse problems. A 
Newton-Kantorovitch algorithm with Tikhonov regularization [17] has been used 
for the determination of the (non sinusoidal) shape of holographic gratings from 
experimental measurements of efficiency [18]. The same kind of formalism can 
be used for the determination of the permittivity of a stack of dielectric layers 
from measurements of the reflection factor [19] The very difficult problem of the 
calculation of the power spectrum of a non-shallow randomly rough surface will 
also be presented and analyzed from numerical results. 
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This paper presents our recent study on the correlation effects of waves scattered 
by rough surfaces. The angular correlation, called the "memory effect," has been studied 
extensively in the past. The memory effect is applied to the determination of the average 
height profile of rough surfaces. This is the topographic mapping problem addressed by 
InSAR, and therefore, our approach is a generalization of conventional InSAR to include 
four antenna elements. The theory is based on the Kirchhoff approximation applied to 
surfaces with large radii of curvature. Unlike conventional scattering cross sections per 
unit area of the rough surface, we consider two incident waves at different incident angles 
and the corresponding scattered waves at two different directions. The correlation 
function of these two scattered waves, called the mutual coherence function, is then 
calculated. The surface consists of the slowly varying deterministic average profile and 
the randomly varying height. It is shown that the phase of the mutual coherence function 
is directly related to the average surface profile, and therefore, the topographic map of the 
height profile can be determined by the measurement of the mutual coherence function. 
The relative positions of the four antennas affect the sensitivities of the determination of 
the height profile, and this is studied by examining the memory signature diagram which 
shows the amplitude and phase of the mutual coherence function as functions of the 
incident and scattering angles [1]-[10]. 

The memory signature diagram is constructed as follows. Let the incident field 
with the incident angle 0,- be E, and the corresponding scattered field in the direction 6S 

t it t 
be Es. Also let Et  be the incident wave at 0,- and Es be the scattered wave at 6S . We 

/* ft 
plot the correlation B(x,y) =< ESES    > as a function of x = sinfy and y ■= sin05 . Then 
the correlation B is strong along the memory line y-y0 =x-x0 where y0 = sin8S and 
x0 = sin 91 as expected from the memory effect. Outside of this line, B is small. 
However, for a deterministic object, the correlation is not small in all x and y. Therefore, 
the memory effect can be used to detect an object buried in random media. It is shown 
that the memory effects are drastically different depending on whether the medium is 
deterministic or random. This difference can be effectively used to separate the object and 
the surrounding random medium. Millimeter wave experiments are conducted to show 
that a conducting cylinder buried in a random medium can be detected using this 
technique [7]. 

The angular correlation is also extended to include the frequency correlation using 
the two-frequency mutual coherence function. The Fourier transform of the two- 
frequency mutual coherence function gives the pulse response. We can now let Et and 

/ t 
Es be the incident and scattered fields at k = co/c and £,•   and Es   be the field at 



k' = ca'/c. Then     the     memory     line     is     now     extended     to 

k(sin 6S - sin Q{) = k '(sin ds - sin 0,- ). 

The inverse double Fourier transform of the two-frequency mutual coherence 
function r(coi,a>2) gives the correlation in time difference td, r(fc,fj), and T{tc,t^ = 0) 
is the pulse shape. The two-frequency mutual coherence function for very rough surfaces 
has been studied in detail, and the analytical results are compared with numerical Monte 
Carlo and experimental results. It is also shown that if the surface consists of a slowly 
varying profile and rough surfaces, the pulse arrival time is related to the surface height 
profile [10]. 

If the polarization state of the incident wave changes, the polarization of the 
corresponding scattered wave changes. Polarization responses or signatures are one useful 
example of this polarization correlation. We have generalized this idea to include two 
different polarization states for incident waves and two different observed polarization 
states for scattered waves. The polarization response diagram is then generalized to show 
the characteristic signatures for deterministic and random media. 

Let xi anc* Wi De tne ellipticity and orientation angles of the incident wave £,•, 

and let %i an^ Wi De those of Et . We also let %s 
zn^ Ws ^e me angles for Es, and Xs 

and y/s  be those of Es . Then it is possible to examine the relationships between the 

backscattered fields and the incident fields.   Note that if Xi = Xi — Xs~ Xs   an<^ 

y/i = y/[ = Ws =Ws > then this relationship can be expressed by the conventional 
polarization signature, and therefore the above studies are its generalization. This 
generalized signature is studied for several special cases.   For example, if ^ = 0, the 

Fourier transforms of the correlation in y/s and y^- show peaks at different wave 
numbers depending on the nature of the object and whether the scattering is single or 
multiple. Numerical studies for different objects and rough surfaces are conducted and 
further studies are continuing. 
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ABSTRACT 

Currently, the scattering of light from random rough surfaces has gained much 
attention. By now much work has been focused on the enhanced backscattering 
phenomenon, which is manifested as a well-defined peak in the retroreflection direction 
in the angular distribution of the scattering light. It has been attributed to the correla- 
tions between the scattered field and its time-reversed counterpart. 

When a coherent light is reflected from a rough surface, a complex speckle pat- 
tern is formed. This is the result of the interference among the scattered wavelets, 
each arising from a different microscopic element of the rough surface. However, 
recent theoretic study in volume scattering shows (1_4) that there are novel correla- 
tions among the speckle patterns in the multiple scattering regime and they can be 
divided into three types: short-range correlation, long-range correlation, and infinite- 
range correlations. These three types of correlations play different roles in different 
scattering system geometries. The short-range correlation, also known as memory 
effect, is the dominant part in system where the dimension in the direction of the light 
propagation is much smaller than that in the direction perpendicular to it. The 
memory effect dictates that even though a laser wave suffers many scattering events 
upon traversing a thick volume scattering sample, and therefore its wavefront is much 
distorted and seemingly random, it still "remembers" the wavefront of the incoming 
plane wave, so that as the incoming beam direction changes slightly, the transmitted or 
reflected speckle pattern will move accordingly. The long-range and infinite-range 
correlations will be the dominate part in the system where the dimension in the direc- 
tion of the light propagation is larger than that in the direction perpendicular to it. 
These phenomena have then be confirmed theoretically and experimentally for volume 
scattering. 

Correlation in light scattering from random rough surfaces has been studied .(5_10) 

Taking into account of the multiple-scattering, the intensity correlation function for 
light elastically scattered from a randomly rough metallic grating was calculated ,(5) and 
the angular intensity correlation of light scattering in double-passage through a random 
phase screen was investigated .0) In recent theoretical and experimental investigations 
the correspondence between the correlation function and the enhanced backscattering 



2- 

peak has been studied for light scattering from randomly rough metallic surfaces pro- 
ducing multiple scattering .(9_10) 

In this paper we will study the angular correlation between the scattered speckle 
patterns generated by light incident to a rough dielectric film on a glass at different 
angles of incidence. Experimental results are presented for the angular correlation 
function of far field speckle patterns scattered by a one-dimensionally random rough 
surface of a thin dielectric film on a glass substrate when a polarized beam of light is 
incident on the rough surface from vacuum. This surface, which separates the vacuum 
and the dielectric, is rough enough so that only the diffused speckles are observed. 
The experiment for the correlation measurement was set up to use a CCD camera to 
obtain the image of the speckle pattern in the specular direction for each given angle 
of incidence, the cross correlation function is then calculated from the digitized 
images. It is found that the intensity correlation functions exhibit two distinct maxima, 
one arises from the autocorrelation and the other from the reciprocity condition. It is 
also found that different scattering processes give rise to quite different correlation 
functions, where multiple-scattering processes produce narrow peaks with secondary 
maxima, while single-scattering processes produce relatively broader peaks. 
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Abstract 

We present a rigorous numerical simulation analysis of the second harmonic genera- 

tion of p—polarized light in reflection from a one-dimensional, randomly rough, metal 

surface, when the plane of incidence is perpendicular to the generators of the surface. 

When the incident light can couple to surface electromagnetic waves supported by 

the metal surface at the harmonic frequency, the angular distribution of the intensity 

of the incoherent component of the scattered light at the harmonic frequency displays 

either well-defined peaks or dips in the retroreflection direction and in the direction 

normal to the mean plane of the surface. These effects are suppressed by the direct 

excitation of surface electromagnetic waves at the fundamental frequency. 



Interference effects in the multiple scattering of electromagnetic waves in disordered 

media or from rough surfaces have attracted much attention recently in view of their analogy 

with the interference effects occurring in the multiple scattering of electrons in strongly 

disordered media that are responsible for Anderson localization. Even if the disorder is weak, 

these effects are important since they can lead to weak localization - enhanced backscattering 

- viz. a peak in the retroreflection direction in the angular distribution of the intensity of the 

light scattered diffusely from disordered media. The enhanced backscattering of light from 

weakly rough metal surfaces has been of special interest because the multiple scattering of 

the surface electromagnetic waves supported by such surfaces - surface plasmon polaritons 

- is responsible for the appearance of the enhanced backscattering peak [1]. 

Recently, the main ideas of weak localization have been applied to nonlinear optical 

phenomena in disordered media (see, e.g. [2]). In particular, the results of a perturbative 

calculation predict that enhanced second harmonic generation of light at a weakly rough 

metal surface occurs not only in the retroreflection direction but also in the direction normal 

to the mean surface [3]. The multiple scattering of surface polaritons plays the decisive role 

in the appearance of both peaks. 

Perturbation theory for rough surface scattering, however, has a limited range of ap- 

plicability [4], and inevitably involves other approximations as well (e. g. small roughness 

approximation [5], pole approximation, Rayleigh hypothesis). In this Letter we describe 

rigorous numerical calculations of the second harmonic generation of light in reflection from 

a one-dimensional, weakly rough, random metal surface. The numerical approach we have 

used follows closely that described in detail in [6]. 

The physical system we consider consists of an isotropic metal characterized by a com- 

plex, frequency dependent dielectric constant e(u>) in the region x3 < ((xi) and vacuum in 

the region x$ > C(xi)- The surface profile function C(xi) 1S assumed to be a single-valued 

function of xi that constitutes a stationary, zero-mean, Gaussian random process. 

A p—polarized Gaussian beam of frequency to [6] is incident from the vacuum side 

at an angle 60 onto a surface of length L with the plane of incidence the xix3—plane. 



The source functions, defined as H(x\ \ Q) = .H%(x\,x$ \ ft)| >/ x and L(x\ \ ti) = 

4>(xi) (dH£(xi,x3 | ti)/dn) IJ-J-^J), where ti stands for either u or 2u>, H£(xi,X3\ti) is the 

total magnetic field in the vacuum region, <^(xi) = {1 + [C'C^i)]2}1''2, and d/dn denotes the 

derivative along the normal to the surface directed from the metal into the vacuum, satisfy a 

pair of inhomogeneous integral equations at both frequencies u> and 2u>. The integral equa- 

tions at the frequency w obtained in a manner described in [6] are converted into matrix 

equations and solved using standard numerical techniques. 

To calculate the second harmonic (SH) field we make use of the fact that homogeneous 

and isotropic metals possess inversion symmetry. Then, the SH radiation we are interested 

in is generated in a metal-vacuum interface layer across which both material constants and 

electromagnetic fields vary strongly and which has a finite thickness on the microscopic scale. 

Integrating Maxwell's equations across the interface layer with the use of the phenomeno- 

logical expression for the surface nonlinear polarization given in [7], we obtain the nonlinear 

boundary conditions at a rough metal surface, in the form 

L(Xl\2u>) - L<1^] = ^^ UM \${x,)^H{xM \   +v2(u)(<i>(x1)L(x1\u,))2 

'(1) 

and 

H(Xl\2u) - H<(Xl\2u) = -—fi3(u)(l>2(x1)L(x1\u)-^H(x1\io), (2) 
u ax\ 

where H<{xi \ 2u) and X<(a;i | 2u) are the source functions inside the metal at the harmonic 

frequency and are obtained from H(xi\2u) and L(xi\2u) with the appropriate changes. 

The phenomenological constants p\(u), /^(w), and /^(cu) appearing in Eqs. (1) and (2) 

characterize the behavior of the nonlinearity coefficients and the dielectric constants in the 

interface layer [3,7]. 

With the use of the nonlinear boundary conditions we obtain a pair of inhomogeneous 

integral equations for the source functions H(xx\2u) and L(xi\2u) which can be solved nu- 

merically, once we have calculated the fundamental field source functions and, consequently, 



the nonlinear sources in Eqs. (1) and (2). The differential reflection coefficient (drc), which 

gives the fraction of the total energy incident onto the surface that is converted into fun- 

damental or harmonic light scattered into an angular interval d6s around the scattering 

direction 6S can now be determined in a standard manner [6]. 

The results presented below represent averages obtained from 2000 realizations of the 

random surface. The wavelength of the incident light was chosen to be 1.064/ira. The 

dielectric constants of silver at the fundamental and harmonic frequencies are then e(u;) = 

—56.25 + z0.60 and t{2u) = —11.56 + z'0.37, respectively. In all our calculations we have 

used values of the nonlinear parameters /^i(o;), /X2(w), and /^(w) given by the free-electron 

model [8]. 

The surfaces we consider here are weakly rough. Therefore, as was done recently to 

enhance interference effects involving surface polaritons in the incoherent scattering of light 

from weakly rough one-dimensional metal surfaces [9], and to clarify the mechanisms re- 

sponsible for the appearance of different features in the drc at frequency 2a;, we have carried 

out calculations for random surfaces characterized by power spectra that are nonzero only 

in the ranges of wavenumbers in which the incident light can couple into surface polaritons 

at frequencies UJ and/or 2w: 

g(\k\)=rHl 
Ak{u) 

TH2 

recttk-K^))+rect(k + k°*{u] 

Ak(2u) 

Ak(uj)   ) \   Ak(u) 

(k-ksp(2co)\ (k + ksp(2u) rect    —A , ,^   .—    + red ' 

+ 

(3) Ak{2u;)   j \   Ak(2u) 

where fc,p(Q) = (ft/c)Äe[e(ft)/(e(ft) + 1)]1/2, #i + H2 = 1, Ak(ü) = 2(ft/c)sin0m, and 

red represents the rectangle function [11]. For the examples presented here we have chosen 

em = 20°. 

In Fig. 1 we present the contribution to the mean drc from the incoherent component 

of light scattered at frequency 2u>, when the surface is characterized by the power spectrum 

(3) with Hi = 0, H2 = 1 and a standard deviation of heights S = 30 nm. Thus, the 

incident light does not directly excite surface polaritons of frequency u and, as a result, 

the drc at frequency u does not display a peak in the retroreflection direction.   However, 



for small angles of incidence, the drc at frequency 2u> displays a well-defined dip in the 

retroreflection direction (Figs. 1(a), (b)). A small peak in the direction normal to the 

mean surface appears on a slope of the backscattering dip at small angles of incidence 

(Fig. 1(b)). For larger angles of incidence (9S = 15°), the dip in the drc at 2u evolves 

into a strong and well-defined backscattering peak (Fig. 1(c)) and the background at zero 

scattering angle becomes flat. Although, in principle, the surface does not contain frequency 

components that can excite directly surface polaritons at the fundamental frequency, it is 

conceivable that some weak coupling occurs due to the finite length of the surface and the 

finite beam width. The additional strong peaks observed in these figures are then diffuse 

bands arising from the nonlinear mixing of the incident light with surface polaritons of 

the fundamental frequency [3,10]. It should be noted that the symmetry of the nonlinear 

interaction of counter-propagating p—polarized electromagnetic waves at a planar vacuum- 

metal interface, which forbids the radiation along the normal to the surface, is broken by the 

surface roughness, leading to a nonzero background in the direction normal to the surface. 

In Fig. 2 we present the contribution to the mean drc from the incoherent component 

of the scattered light at frequency u (Fig. 2(a)) and at frequency 2u> (Fig. 2(b)) when the 

random surface is characterized by the power spectrum (2) with Hi = 0.1, H2 = 0.9 and 

8 = 30 nm. In this case the mean drc at both the fundamental (Fig. 2(a)) and the harmonic 

(Fig. 2(b)) frequency displays an enhanced backscattering peak. However, the intensity of 

the peak at the second harmonic is lower than when the entire power spectrum is centered 

at ksp(2u)) (Fig. 1(b)). The peak disappears when the entire power spectrum is centered at 

ksp(uj). A dip at zero scattering angle is also seen in Fig. 2(b). 

The results obtained support the following physical picture of the processes taking place 

on a rough nonlinear surface, viz. when the incident light is converted predominantly into 

surface polaritons of frequency u, the nonlinear interaction leads to diffuse scattering of 

volume second harmonic waves while, when the excitation of surface polaritons of the fun- 

damental frequency is suppressed, the surface polaritons of the harmonic frequency are 

generated efficiently.   The coherent constructive/ destructive interference in the multiple 



scattering of the latter leads to the appearance of the enhanced backscattering peak/dip. It 

should be pointed out, that in this case the peak/dip in the direction normal to the mean 

surface as well as the diffuse bands are strongly suppressed too. 

In summary, in this Letter we have presented the results of calculations of the angular 

distribution of the intensity of the diffuse component of the second harmonic light generated 

in reflection from a randomly rough metal surface. The results obtained display a peak 

or a dip in the retroreflection direction in the angular distribution of the intensity of the 

second harmonic light. For surfaces with the kind of power spectrum employed, we have 

shown that the intensity of the backscattering peak decreases when surface polaritons at 

the fundamental frequency are excited. Thus, our calculations show that the existence of 

surface polaritons at the second harmonic frequency is responsible for the backscattering 

effects observed at that frequency. 
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Figure Captions 

Fig. 1. The contribution to the mean drc from the incoherent component of the scattered 

light of frequency 2u calculated for a surface possessing the power spectrum (3) with Hi = 

0,H2 = l and 8 = 30 nm. (a) 60 = 0°; (b) 60 = 3° and (c) 60 = 15°. The broken vertical 

lines indicates the backscattering direction. 

Fig. 2. The contribution to the mean drc from the incoherent component of the scattered 

light of frequency u> (a) and of frequency 2u (b) calculated for a surface possessing a rect- 

angular power spectrum (3) with Hi = 0.1, H2 = 0.9 and 8 = 30 nm; 60 = 15°. 
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SCATTERING OF INFRARED WAVES BY TWO-DIMENSIONAL RANDOMLY 

ROUGH DIELECTRIC SURFACES : COMPARISON BETWEEN BRDF 

MEASUREMENTS AND NUMERICAL SIMULATIONS. 

The presentation deals with the phenomenon of optical scattering by realistic surfaces, 

i.e.  two-dimensional  surfaces.  We have focused our study on monochromatic infrared 

properties. The wavelength of this study is 10.6 urn. The materials considered are of two 

kinds : an absorbing glass and a silicon carbide surface that has a metallic behavior at the 

wavelength of interest. The samples fabrication and characterization concerning optical indexes 

and roughness are detailed. The BRDF measurements on these samples have been carried out 

by use of a fully automated in and out of plane laser-light scatterometer. Comparisons of 

measurements  with  other  laser-light  BRDF  measurements  and  incoherent  light  BRDF 

measurements are presented. Then we give a confrontation of these measurements with the 

results of numerical simulations. The calculations are based on the Rayleigh hypothesis and the 

extinction theorem and consist in an iterative series solution introduced by J.-J. Greffet. The 

properties are observed in the plane of incidence as well as in planes exterior to this plane. Also 

results at different angles of incidence up to 80 degrees are examined. The comparison is made 

for both fondamental polarization states of the incident radiation, p and s. 
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The phenomenon of light scattering from one-dimensional randomly rough 
surfaces has been studied in resent years by the use of approximate or rigorous 
electromagnetic theories. There is considerable interest in investigating the 
scattering properties of random surfaces with different statistical properties 
experimentally, as a tool for testing the validity of the theoretical approaches 
to the problem, and to investigate trends in the scattering behavior. Until 
now it has been difficult to provide critical and complete experimental data 
for a variety of reasons, not the least of which are the problems that arise 
in the statistical characterization of experimental surfaces. Relatively subtle 
statistical properties may play a significant role in the scattering behavior of 
a random surface [1], 

In this paper we present results of experimental studies of the diffuse scat- 
tering of electromagnetic waves from one-dimensional randomly rough metal 
surfaces. The surfaces were fabricated on photoresist, and were subsequently 
coated with a layer of gold. They were characterized by a mechanical pro- 
filometer and, in all cases, both the histogram of heights and the measured 
surface height correlation function had an approximately Gaussian form. The 
surfaces have correlation lengths in the range 3 — 15/um, and rms heights in 
the range 0.30 — 0.75/xm. We present the results of measurements of the 
scattered intensity as a function of the scattering angle for various combina- 
tions of the polarization and wavelengths of incident beam. The latter had 
the values 5.5/im and 10.6^m. Comparisons of these results with the results 
of numerical simulations of the scattering problem, and with results of some 
analytical theories, will be made [2j. 

.1 
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There has been a good deal of attention devoted to surface shape resonances in recent 
years. These are excitations that are associated with an isolated defect on an oth- 
erwise planar surface. They are characterized by discrete, complex frequencies that 
depend on the shape of the surface perturbation. Surface shape resonances of different 
origin have been studied, viz. acoustic surface shape resonances associated with local 
perturbations on the surface of an elastic medium [1-3], magnetostatic surface shape 
resonances associated with a local perturbation on the surface of a ferromagnetic in- 
sulator [4], and electrostatic and electromagnetic surface resonances associated with 
local perturbations on the surface of a metal or a perfect conductor [5-12]. The elec- 
tromagnetic surface shape resonances have attracted a great deal of attention as they 
are believed to play an important role in surface enhanced Raman scattering [13] and 
in the enhancement of second harmonic generation in reflection from a rough metal 
surface [14]. However, until now no direct experimental evidence for the existence of 
electromagnetic surface shape resonances has been provided. Existing studies of the 
scattering of electromagnetic waves from an isolated ridge or groove on a planar sur- 
face of a metal or perfect conductor have dealt mostly with the angular distribution 
of the intensity of the scattered waves of a given frequency [12, 15-18]. It was shown 
in [12] in a study of the scattering of a beam of 6—polarized light from a rectangular 
groove on the surface of a perfect conductor, that the intensity of the scattered light 
as a function of its frequency shows well-defined dips at frequencies attributed in [12] 
to surface shape resonances. The angular dependence of the intensity of the scattered 
light undergoes a significant rearragement when the frequency of the incident light is 



tuned to the vicinity of those particular frequencies. 
In our paper we present a theory of light scattering from a single rectangular 

groove on the surface of a perfect conductor (Fig. 1). The frequencies of the elec- 
tromagnetic surface shape resonances and the scattering of a Gaussian beam of p— 
and 5—polarized light from such a surface are calculated by both the modal approach 
[15-18] and a numerical method based on Green's second integral identity [19, 20]. 
We show that two different phenomena occuring in the system lead to a complicated 
frequency dependence of the differential reflection coefficient (drc). The first is the 
interference of the fields in the groove leading to a minimum of the total field in the 
plane of the surface, x3 = 0, in the case of s—polarized light, and to a minimum of 
the normal derivative of the total field in the plane x3 = 0 in the case of p—polarized 
light. As a result, the incident light is reflected predominantly in the specular di- 
rection, thus leading to the suppression of the scattering into other directions and, 
as a consequence, to the appearance of dips in the drc for scattering angles far from 
the specular direction. The second phenomenon is the existence of the surface shape 
resonances. We show that the presence of the p—polarized surface shape resonances 
leads to the appearance of dips at their frequencies in the drc. However, the fre- 
quencies of the s—polarized surface shape resonances fall in the close vicinity of the 
frequencies at which the field in the throat of the groove reaches its minimum value. 
As a result, the influence of the shape resonances on the drc is masked by the strong 
dips connected with the interference effects. 

We assume that p— or 5—polarized light of frequency u> is incident from the 
vacuum side onto the surface depicted in Fig.l, with the plane of incidence being the 
Xix3—plane. Then for p—polarized light the only nonzero component of the magnetic 
field vector is H2{xi,x3\u), while for s—polarized light the only nonzero component 
of the electric vector is E2(xi,x3\u). 

We seek the field in the vacuum region x3 > 0 as a sum of an incident and a 
scattered field, 

E2(XUX3\Lü) = e'-**i-«°(*.")*3 +   r p.eiw+i°to*>)>»RW(q\k), (1) 
J-co 27T 

H2(X1,X3\U>) = e'**i-''°<(*.'")*3 +    f°°   ^leilxi+ic,(q,u,)x3R(p)^k^ (2) 
J-co 27T 

with 

<*(<!,") = \ — - q2, Rea(q,u) > 0, /ma(?,w) > 0. (3) 
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Fig.l The scattering geometry. 

The field in the groove can be expressed in terms of modal functions which are the 
solutions of Maxwell's equations satisfying the boundary conditions at the surfaces 
Xz = —h and X\ = ±1/2 for each polarization: 

E2(x1, x3\u>) = ^2 B^s) sin[an(uj)(h + x3)] sin 
n=\ 
oo 

H2{x1,x3\u) = ]T B(ri cos[an(u)(h + x3)} cos 

where 

n=0 

7rn 

LT 
nn 

[T 

(*i - 1/2) 

(X! - 1/2) 

I Lü / 7TTI \ 
an(w) = W— - ( —r) , Rean(u) > 0, Iman(u;) > 0. 

(4) 

(5) 

(6) 



Matching the fields and their derivatives at the plane x3 = 0 and eliminating the 
scattering amplitude we obtain a matrix equation for the coefficients {B^p's^} 

where the vector A^s'p^ has the components 

A[s\u) =-2ia(k,u)S^*(k), 

A^(co) = 2S^*(k), 

with k — (uj/c) sin 60 and 

#>(*) = *       nT/Z 

Sip)(q) = 

lq2-(nir/iy  . 

4 q 

I q2 - (mr/l)2 ["        2 

(s.P) 

l
2    

J   cos(9//2) - i   +l
2    

j   sin(9//2) 

^     ;-cos(g//2)+        lo    
;   sin(g//2) 

The elements of the matrices D       are 

DtfLH = an{u;)hcos{an(u;)h}6mn + M^(w) sin[a„(w)Ä], 

where 6mri is the Kronecker delta and 

./i /rmr\ fmrs 

«1SM = -^^)U 

X 
oo ^      a(g,w) 

J-oo 27T 

l + (-l)n+m 

1 - (-l)ne!<?/ 

x 

and 

where 

oo 2ir(q2-{mr/l)2)(q*-(mir/l)*)' 

D£i (w) = cos[an(u)h]6mn + M^(u;)Qm(a;)/isin[a7l(cu)/i], 

1 - (-l)nei?'' 
a; ~4 L 1 + (-i)n+m] r dq 

oo 2TT a(9,a;)(g
2 - {nir/l)2){q* - (mTr//)2)' 

Finally, the scattering amplitudes R^s'p\q\k) are found to be 

Rls\q\k) = -27r8(q - k)- 

(») 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 

-ila(k,u,)h £ £ sin[am(o;)/i]5W(g)(D     MU^'W, (16) 
m=l n=l 



and 

R(p)(q\k) = 2ir6{q - k) + 
1 CO        CO I    \ 

+i W^Ü ^ ^ sin[am(a;)Ä]5W(9)(B     MUS?^*)- (17) 
w'     /     m=0 n=0 

Up to this point we have assumed that the incident field is a plane wave. In the 
case when a finite beam of the form 

H^^Minc = ~ f/2 Me-W'^W-WjWM****'-*»""»,        (18) 
2y/TVC J-K/2 

where F(xi,X3\u>)inc stands for either E2(xi,x3\u)inc in the case of 6—polarization or 
for H2(xi,x3\u>)inc in the case of p—polarization, 60 is the angle of incidence, and w 
is the half-width of the beam, is incident onto the surface, the magnitude of the total 
time-averaged incident flux is 

p(s,p) _   r CW 

'32TTV^ 
cr/&/2-*°»)+er/&/2 + W (19) 

where Z/2 is the length of the surface in the x2-direction, and erf(x) is the error 
function. The time-averaged flux scattered scattered into the direction 9SC is 

P{s'p)(esc) = L2_cos20sc|i^)(g,uO|2, (20) 

where q = (uj/c)sin6sc and 

R^p\q,u) = -^- T/C dkR^Hql^-^-e-^2^2^-1^^-6^.        (21) 
L^J-KC J-w/c a{k,u) 

The differential reflection coefficient (drc), which gives the fraction of the total energy 
incident onto the surface that is scattered into an angular interval d0sc about the 
scattering direction defined by the scattering angle 6SC, is then given by [20], 

dR^ _ P(S'P\9SC) 

desc  ~    p(>*)   • (22) 
sc
 rinc 

We now turn to a discussion of the results obtained. The frequencies of the surface 
shape resonances associated with the rectangular groove are the frequencies at which 



<-i.(s,p) 

the determinant of the matrix D in Eq.(7) vanishes. It is seen from Eqs.(13) and 
(15) that the elements M^\u>) vanish unless m and n have the same parity, which 

<-*(s,p) 
means that the equation det D (w) = 0 breaks up into two separate equations 
for the frequencies of surface shape resonances whose electric field (5—polarization) 
and magnetic field (p—polarization) are even and odd functions of xi. The solutions 

of the equations det D (w) = Chare complex, reflecting the fact that they fall 
into the frequency region of bulk electromagnetic waves.   We have evaluated the 

<-+(s,p) 

functions | det D (w)l as functions of u> numerically to obtain the frequencies 
of the lowest frequency surface shape resonances of even and odd symmetry. A plot 

«-►(s,p) 

of I det D       0^)1     as a function of the frequency u> is shown in Fig.2. It should be 
*-*(s'P) 

pointed out that the nondiagonal elements of the matrices M       are negligibly small 
in comparison with the diagonal elements. Therefore, to obtain accurate values of the 
frequencies of the lowest frequency resonances it is enough to evaluate determinants 
of 1 x 1 matrices for resonances of each symmetry. In this case the frequencies are 
primarily defined by the solutions of 

cos[ai(w)Ä] =0 (23) 

for p—polarized resonances, and 

tanMu,)/*] = S!lpilJ ^Le-i^/c-r/4) (24) 
ZTTLü       V  27TC 

for s—polarized resonances.   In obtaining Eq.(24) we have taken into account that 
~(s) 

the solutions of det D     (w) = 0 group just below the cutoff frequency determined 
by an(u) = 0 in the frequency region where an{uj) <C u/c. In this case the solutions 
of Eq. (24) are close to the solutions of sm[ai(io)h] = 0. The terms omitted in these 
estimates (Eqs. (23) and (24)) contribute only a small shift of the frequencies. As in 
the determination of the surface shape resonance frequencies the contribution of each 
mode to the scattering amplitude is significant only in the frequency region below 
the cutoff frequency, so that in the frequency region of the lowest frequency shape 
resonances (/ < A < 21) the main contributions comes from the first modes in the 
modal representations (4) and (5).   As expected, the field inside the groove has its 
maximum value at the frequencies of the surface shape resonances.   However, the 
contributions of the leading modes to the fields £2(2:1, £3|u;) and dH^xi, x3\u)/dx3 
on the plane x3 = 0 vanish at the frequencies defined by the zeros of s'm[an(uj)h}. 
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Fig.2 (a) |det £W {u)\~2 and (b) | det D™ {ui)\~2 

l = 0.35//m and h = l//m 
for a rectangular groove with 

This means that the boundary conditions for a perfect conductor are almost restored 
on the plane x3 = 0, and this results in the decrease of scattering out of the specular 
direction. The latter gives rise to dips in the frequency dependence of the drc for scat- 
tering angles far from the specular direction. These dips were attributed incorrectly 
to surface shape resonances in Ref. 12. 

In the case of s—polarization, in the lowest frequency region we are interested 
in, the corresponding frequencies almost coincide with the frequencies of the surface 
shape resonances, given by Eq. (24). It should be pointed out that Eq.(24) gives 
a good approximation to the frequencies of the s—polarized resonances only for the 
first two or three solutions which group just below the cutoff frequency. As the 
frequency increases, Eq.(24) transforms into Eq.(23), so that the frequencies of the 
s-polarized surface shape resonances shift from the positions of the dips associated 
with the vanishing of the modal field at x3 = 0. However, the imaginary part of the 
solutions grows with the solution number, thus preventing them from influencing the 
drc. 

In the case of p—polarization the lowest order mode associated with the magnetic 
field independent of x\ has no cutoff and leads to the appearance of dips in the fre- 
quency dependence of the drc at the frequencies ujn = rnrc/hc. The lowest frequency 
p—polarized mode giving rise to the surface shape resonances turns out to be the odd 
mode, so that at normal incidence the Gaussian beam does not feel the presence of 



the surface shape resonances. However, at oblique incidence in the frequency region 
of the dominant influence of this mode both the surface shape resonances and the 
minima of the mode field give rise to dips in the drc. The somewhat simplified anal- 
ysis presented above describes very well the behaviour of the fields and the drc in 
the frequency region just above the cutoff frequency for the odd mode of the lowest 
order. With increasing of the frequency the higher order modes become important 
and, thus, complicate the frequency dependence of the drc. 

In addition to the modal expansion approach, we also used the method of moments 
[19,20] based on Green's second integral identity to solve the scattering problem. 
Although the former approach gives a deeper understanding of the problem, the 
latter allows obtaining an exact solution for an arbitrarily shaped surface profile. We 
define the surface profile by the parametric equations X\ = £(s), £3 = r)(s), where the 
parameter s measures the arc length of the curved surface. The functions P(s'p)(6sc) 
introduced in Eq.(20) can then be represented as [20] 

P{S'P\9SC) = L2 \rs,P(0scW (25) 
' 647T2o; 

where the functions rStP(9sc) are defined by 

rs{0sc) = - Jdse-^^^'^^^^Fislu), (26) 

rp(6sc) = £jdse-iWW*B'<^M™e'J[ri,(s)8meac - t'(s)cas6ac)H(s\u>),      (27) 

—r)'(s)- r-£'(s)ö— E2(xi,x3\u) and H(s\u) = H2(XUX3\Lü) eval- 
ÖX\ 0X3} 

uated at (£1,2:3) = (£(s),r}(s)). The functions F(s\u>) and H(s\u>) satisfy the integral 
equations 

F(s\u) = F{s\u>)ine - J ds"HZ(s\s')F{s'\u>), (28) 

H(s\u) = H{s\u)mc + j ds"H0(s\s')H(s'\u), (29) 

where F(s\u)ir, -*'(*)£-+?(*) d 
^(xi,x3\u})inc and H(s\u)inc - J"(£i, x3\u)inc dxi Ö£3J 

evaluated at (£1,2:3) = (£{s)iV{s))- The kernels of Eqs.(28)-(29) have the form 

xm (1) u 

A(M - &') - zri'(s))2 + (vis) - v(s') + e('(s)yy/\ 
(30) 



nT
0(sW) = j-v'(s)J^ + ?(s) d ] 

4 'dt(s)        v Jdr,(S)\ 
x 

r(i) ' w 

Xif°   UuOO - £(50 + eV(s'))2 + (V(s) - vW ~ £t'(s')n/2) ' (31) 

Here HQ \Z) is a Hankel function of the first kind and £ is a positive infinitesimal. In 
solving Eqs.(28) and (29) by the method of moments, we replace the infinite range 
of integration by the finite one (0, L), where L is the arc length of the part of the 
surface profile we consider. We point out that the singular points of the surface 
profile, (xi,x3) = (—//2,0), (//2,0), (—1/2, — h), and (1/2, — h) give no contribution 
to the integrals, as was shown in Ref.21. Therefore, we can divide the range (0,L) 
into three subranges on each of which there are no singular points. Then we divide 
each of these subranges into intervals of equal arc length As = L/N [19], where N 
is the total number of the intervals on the surface. The method of moments then 
yields F(s\u>) and H(s\u>) at the midpoint of each interval. Finally, we calculate the 
functions P(s,p)(0sc) from Eqs. (25)-(27). The results obtained by the method of 
moments agree with those obtained by the modal expansion method. 

In Fig. 3 the drc for the p—polarized light is plotted as a function of frequency for 
different angles of incidence and scattering along with the function | det Z)(p)(u>)|-2. At 
normal incidence the dips in the drc appear at the wavelengths given by An = 2h/n, 
at which the normal derivative of the magnetic vector almost vanishes at the plane 
23 = 0. At oblique incidence, however, the positions of the dips shift to the position 
of the maxima in the frequency dependence of | det D^(UJ)\~

2
. 

In conclusion, in this paper we have first demonstrated the existence of electro- 
magnetic surface shape resonances associated with a rectangular groove on a perfectly 
conducting surface. We have have then shown that in both p— and s—polarizations 
the differential reflection coefficient displays well-defined dips which are due to the 
vanishing, or almost vanishing, of the total field (s—polarization) and its normal 
derivative (p—polarization) at the plane £3 = 0. The presence of the p—polarized 
surface shape resonances leads to the appearance of dips at their frequencies in the 
drc. However, the frequencies of the s—polarized surface shape resonance fall in the 
close vicinity of the frequencies at which the total field in the throat of the groove 
reaches its minimum value. As a result, the influence of the s—polarized surface shape 
resonances on the drc is masked by the strong dips caused by the interference effects. 
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Fig. 3 The drc for p—polarized light scattered from a recatangular groove with / = 
0.35^m and h = Ifirn at a fixed scattering angle 6SC = 30° and different angles 
of incidence, as a function of the wavelength of the incident light. The arrows 
pointing up show the wavelengths of the surface shape resonances. The arrows 
pointing down show the wavelengths at which the normal derivative of the total 
field at X3 = 0 has its mininum value: the solid arrows pointing down show the 
wavelengths Xn = 2h/n at which the normal derivative of the first even mode 
vanishes, viz. the zeros of sin[ao(ü;)/i]; the dashed arrows pointing down show 
the wavelengths A„ = 2/J(n/h)2 + (l//)2 at which the normal derivative of the 
first odd mode vanishes, viz. the zeros of sin[cti(u>)h]. 
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Statistics of eigenmodes in microwave cavities with rough boundaries 

E. Kanzieper 
The Jack and Pearl Resnick Institute of Advanced Technology, 

Department of Physics, Bar-Ran University, Ramat-Gan 52900, Israel 

The statistics of the local amplitudes t; of the eigenfunctions of a closed system with rough boundary is studied 
within the framework of the random matrix theory (RMT)1. This problem is proved to be rather general, being 
equally related to the statistics of the wave field in microwave resonators and acoustic reverberation rooms, and to that 
of electrons confined in quantum dots as well2. It is shown that this statistics is entirely determined by the symmetry 
of the real microscopic problem but it is insensitive to the microscopic details (such as boundary shape, statistical 
properties of the surface roughness, etc.). Whereas the RMT-approach leads to the conclusion about the absence of 
correlations between wavefunctions belonging to different eigenstates, these correlations are shown to survive for the 
wavefunctions within given eigenstate but taken at different spatial points inside irregularly shaped closed system. 
The latter statement follows from the analysis, of the joint probability distribution of the modulus square of the 
wavefunctions at two different spatial points. Moreover, it is turned out that the correlations between fluctuations 
of the wavefunctions at different spatial points depend on their amplitudes. The large fluctuations remain strongly 
correlated at large distances of the order £ = Av1/^-1), while correlation length for small .fluctuations behaves as 
£ = Xy/v (here A is the eigenmode wavelength, and d is the dimensionality of the closed system). The general 
results derived within the framework of the phenomenological RMT-approach exactly coincide with those obtained, 
for example, by straightforward solution of the Shrödinger equation for electrons in a disordered quantum dot by 
means of the zero-dimensional version of the non-linear cr-model3,4. 

1. V. Freilikher, E. Kanzieper, and I. Yurkevich, Physical Review E 54 (1996) 
2. A. Kudrolli, V. Kidambi, and S. Sridhar, Physical Review Letters 75, 822 (1995) 
3. M. Srednicki, preprint cond-mat/9512115 
4. V. N. Prigodin, Physical Review Letters 74, 1566 (1995) 
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Abstract 

The application of near-field scanning optical microscopy in general imaging is discussed. Some 
of the challenges facing the technique in probing rough surfaces are enumerated. It is argued that 
direct imaging of rough surfaces may be subject to significant coherent effects which must be 
considered in image interpretation. The role and nature of feedback systems, amplitude, and 
phase signals are examined. 

1. Introduction 

Near field scanning optical microscopy is the study of those phenomena that occur over a sub- 
wavelength distance from an object {1,2}. Naturally, the process involves the use of a probe in 
this region to achieve a resolution beyond the diffraction limit {3-6}. The fact that one is dealing 
with light opens a vast number of possible configurations, and contrasts. Indeed, near field 
microscopy has been demonstrated in probing amplitude {5,7,8}, phase {9,10}, polarization {11- 
14}, in fluorescence and photoluminescence detection, imaging, and spectroscopy {15-19}, and 
in the measurement of critical dimensions {20}. In all these cases, the NSOM probe has been 
used to illuminate the sample in question. Yet, the tip can also be used to collect the signal in the 
near-field, allowing the probing of an existing field. Some examples of the application of the 
NSOM in this area are the detection of waveguide modes, laser diode outputs, and the polarization 
effects of high numerical aperture focusing {21-23}. 

In the context of rough surfaces, the NSOM takes on the posture of a non-contact stylus, and as 
such the main contrast mechanisms that need be considered are the amplitude, and phase in the 
near-field. At the same time, we note that in this particular application the sample is perhaps the 
most tolerant of the inevitable heating effect at the sharpened tip (in case of a fiber probe) {24}. 
One can then consider using a relatively large input power into the fiber to optimize signal to 
noise. 

In this paper, we review and examine the role of the NSOM in imaging rough surfaces, and 
discuss some of the challenges facing the theoreticians and experimentalists in this field. 



2. Nature of force regulation mechanism 

The vast majority of NSOM's in use today operate on the principle of force regulation of the 
tip/sample separation. This involves operating the tip in near resonance condition in the close 
vicinity of the sample, and observing the change in the tip oscillation amplitude upon scanning the 
sample under the tip {5,7,25}. The prevalent view of the mechanisms of the modulation of the 
tip oscillation amplitude have been i) the reduction of the amplitude due to the presence of a layer 
of contamination on samples and ii) the resolved component of the Van der Waales attractive 
forces along the direction of the oscillation. Recently, however, there has been a suggestion that 
the contrast mechanism is the reduction in amplitude of the free tip oscillation due to the contact 
of the sample and the tip at one extreme of the cycle. This latter case would be highly reminiscent 
of the tapping mode AFM. The resolution of this problem is of significance both to the near-field 
optics and force microscopy communities. In addition, there is direct experimental evidence of 
the effect of surface conditioning, including hydrophobicity and hydrophilicity on the tip approach 
{21}. The challenge to the community is to establish the true nature of this regulation mechanism, 
and to investigate the subtle effects of departures from the different models. 

3. Nature of amplitude imaging in near-field microscopy of rough surfaces 

Although the advent of force regulation substantially alleviates the problem of tip crash and 
destruction in viewing real surfaces, one basic question remains: what is the nature of the optical 
signal in imaging a rough surface? Consider the case of viewing a rough surface in reflection 
using an aperture NSOM. The light exits through a small aperture, and illuminates the part of 
the sample directly under the tip. The scattered light then illuminates the surrounding area. The 
radiation is gathered by a relatively high NA lens, typically set at an angle w.r.t. the sample. 
Thus, the signal at a given scan position is a function not only of the sample point under the tip, 
but also the surrounding points. The problem is somewhat alleviated in practice due to the fact 
that the radiation scattered at a given point quickly loses its evanescent components. The directly 
illuminated point is, therefore, substantially more significant to the overall signal strength at that 
scan position than the surrounding. In this regard, it is advantageous to employ a near field 
illumination and collection mode, in which the same probe is employed for both purposes. 
However, the great reduction in the light level due to the double passage of light through the 
aperture is a major problem (see section 4). Whatever the experimental arrangement, there is a 
need for an in-depth analysis of the situation to establish the limits of applicability of aperture 
NSOM to rough surfaces. 

The case of apertureless NSOM operating on the principle of probe induced scattering of the 
proximity field, due to a diffraction limited illuminated spot {6}, is even more complex. In the 
case of a rough surface, there is a great deal of multiple scattering within the spot, as well as the 
surrounding area. Hence, the probed field at any given scan position is affected by the 
surrounding features. Clearly, the degree to which this effect alters the image is a function of 
such features as the porosity, complex refractive index, and the relative distance of the prevalent 



features within the field. 

Regardless of the method, in both of the above cases the fact that the tip is in the close vicinity 
of the sample means that operation in reflection is accompanied by sample-induced, or tip- 
induced, shadowing {20}. 

4. Nature of phase imaging in force regulated NSOM 

In the diffraction limited domain phase contrast provides a sensitive method of probing the surface 
roughness, and the same holds true in the near-field. However, the fact that one is dealing with 
a much reduced optical power level renders the experimental implementation of phase contrast in 
the near-field a considerably more complicated proposition. Indeed, the demonstration of this in 
both transmission and reflection formats has been in a pseudo-heterodyne arrangement {9,10}. 
For a sample showing pure topography and no variation in dielectric constant, the force regulation 
mechanism will provide a trace of the topography. On the other hand, in cases of samples with 
both a variation in the dielectric constant, and topography, the simultaneity of the force signal and 
near-field phase contrast can be invaluable. Recent theoretical work has indicated that the 
important parameter in near-field imaging is not the height alone, but the product of the height 
and the differential dielectric constant {26}. It should thus be possible to separate these 
parameters and substantially to enhance the available amount of information about samples. A 
particularly significant application of near field phase contrast may be in the area of imaging 
biological structures. 

5. Conclusions 

Some of the applications and challenges facing near-field scanning optical microscopy have been 
discussed. Clearly, the field continues to attract a good deal of serious and casual curiosity in 
various disciplines. In using the NSOM, however, it is particularly important to remember its 
inherent limitations. In so far as the application of the NSOM as a profiler of rough surfaces is 
concerned, it is, perhaps, worth noting that much of the information potentially furbished by the 
NSOM probe is available form the force regulation part. Any attempt to extract additional 
information from the optical data should strictly account for the various interactions taking place. 
Much emphasis needs to be placed on the simultaneity of the acquired data using different 
modalities. The direct deconvolution of the information in a data inversion process remains an 
attractive possibility. 
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Numerical Study of a Scatter-Probe Near Field Optical Microscope 
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Near field optical microscopy has been successful in demonstrating the possibility of beating the diffraction 
limit of conventional optical systems. In near field optics the resolution is primarily determined by the size of 
the probe and resolutions of about A/10 are routinely achieved with these instruments. Efforts are now being 
made by several groups for improving our understanding of the relation between the object and the image, and 
for improving the resolution currently achievable. Most of the reported systems seem to be limited to resolutions 
of about 50 nm. This is not, however, a fundamental limitation but a consequence of the technical difficulties 
involved in making finer and efficient optical probes. 

A minor trend in near field optical microscopy, but one that has already demonstrated near atomic resolution 
[1], consists of using scatterers rather than the tapered optical waveguides employed by more conventional systems 
to illuminate the sample (SNOM) or pickup the near field intensity scattered by it (PSTM). Several different 
schemes of apertureless or scatter-probe microscopes have been proposed (see e. g. [2], [3], and [4]), but the 
weakness of the signals and the complexity of the image formation process have probably contributed to their 
relatively low profile. Nevertheless, the production of metallic probes of near atomic dimensions, such as those 
employed in the STM, is a practical proposition and thus, provided that some progress on the problem of image 
interpretation is made, scatter probe near field optical scanning microscopy represents a potentially promising 
and useful technique. 

The basic idea behind scatter-probe near field microscopy may be visualized as follows. The probe, being small 
in comparison with the wavelength, creates a scattered evanescent field that upon interaction with the sample 
generates a propagating field that can be detected in the far field (the probe acts as a source). Alternatively, 
one may prefer to think that the evanescent waves present in the neighborhood of the sample, can be converted 
into propagating waves by the presence of the probe. Of course, since the interaction between the probe and 
the sample can be strong none of these naive pictures is entirely correct, but they provide an indication of the 
resolution that one might expect from the technique. 

In this work we present a numerical study of a scanning scatter probe near field optical microscope working 
in reflection. The system considered, depicted in Fig. 1, is invariant along the X2-direction, and the plane of 
incidence of the electromagnetic field is the xiiß-plane. For purely s- or p-polarized waves incident on the system 
the state of polarization is retained during the scattering process, and these two fundamental polarizations may 
be treated separately. In a typical numerical experiment the system is illuminated by a plane wave with an angle 
of incidence 8Q, and the scattered light is detected in the direction 6,. The method of calculation is based on 
the "integral equation" formalism described in Ref. [5]. Employing Green's integral theorem, coupled integral 
equations that determine the source functions (the field and its normal derivative) along the boundaries of the 
two objects shown in Fig. 1 are established. The boundaries of the objects may be described as parametric 
curves which are functions of the parameter s, the arc length. Then, in the discretization of the coupled integral 
equations, the sampling interval As can be chosen as constant for a given section of the curves. Also, to reduce 
the time of calculation, an impedance boundary condition applicable to this formulation [6] is employed. This 
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Figure 1: Schematic diagram of the system studied.  The probe and the sample are characterized by complex 
dielectric constants ep(u>) and e(u>), respectively. 

approximation, accurate for cases in which |e(w)| is large, eliminates one of the unknown source functions of the 
scattering problem. The matrix equation obtained through such a procedure is solved using standard numerical 
techniques. This provides the unknown source function which in turn is used to calculate the scattered field. 

In our study, a vibrating probe is simulated by calculating ike signal associated to a point on the sample as 
the difference between the intensities obtained in the far field with the probe situated in two vertically displaced 
positions (see Fig. 1). The image is then formed using the calculated signal for each position of the probe along 
xi as it is scanned over the sample at constant height. Images of various structures obtained under different 
conditions of illumination and detection will be presented. Particular attention will be given to the strength of 
the detected signal as a function of the angles of incidence and detection, and to the effects of polarization and 
optical properties of the materials on the calculated images. 

References 

1.- F. Zenhausern, M. P. O'Boyle, and H. K. Wickramasinghe, Appl. Phys. Lett. 65, 1623-1625 (1994). 

2.- J. D. Pedarnig, M. Specht, W. M. Heckle, and T. W. Hänsch, in Near Field Optics, D. W. Pohl and D. 
Courjon, eds., Kluwer Academic Publishers (Dordrecht, 1993), p. 273-280. 

3.- Y. Inouye and S. Kawata, Opt. Lett. 19, 159-161 (1994). 

4.- R. Bachelot, P. Gleyzes, and A. C. Boccara, Opt. Lett. 20, 1924-1926 (1995). 

5.- A. Mendoza-Suarez and E. R. Mendez, "Light scattering by a reentrant fractal surface," submitted to Appl. 
Opt. (1996). 

6.- A. Mendoza-Suarez and E. R. Mendez, "Derivation of an impedance boundary condition for one-dimensional, 
curved, reentrant surfaces," submitted to Opt. Commun. (1996). 



Recent progress in the analysis of image formation in 
near-field optical microscopy 

Jean-Jacques Greffet. Remi Carminati 
Laboratoire EM2C, Ecole Centrale Paris, CNRS 

F-92295, Chätenay-Malabry Cedex, France 

Several experimental set-ups producing images with super-resolution have been 
designed in the last ten years[l, 2]. In most cases, the relationship between topography, 
dielectric contrast and images is not fully understood. In this talk, we shall discuss the 
main features of the imaging process and propose a possible solution for the inverse 
problem. 

The first topic is devoted to the analysis of the interaction of the tip with the surface 
under unspection. It will be shown that the tip can be accounted for by introducing a 
transfer function that relates the intensity (square modulus of the electric field) to the 
signal detected by a tip, namely, the flux of energy in the optical fiber. This concept 
relies on the assumption of a passive probe[3]. The validity of this approximation will 
be discussed[4]. 

The second topic of the presentation is the analysis of the images produced in the 
detection mode. It was observed that the images depend on the polarization, angle of 
incidence and coherence of the source. These effects will be analysed in the framework 
of a perturbative theory in order to extract the relevant parameters and to provide a 
simple understanding of the main features of the images[5]. In particular, we will show 
that all the effects of polarization and coherence of the illumination can be accounted 
for by an Impulse Response[4]. This concept will be introduced and illustrated by 
numerical simulations. 

The third topic deals with the solution of the inverse problem. Is it possible to 
discriminate between topography and dielectric contrast ? Is it possible to reconstruct a 
surface profile from near field data ? It will be shown that for most structures studied in 
near field, the optical image yields a coupled information on the topography and the 
dielectric contrast. Thus, it is not possible to obtain a purely optical information and 
different structures may produce the same optical image. We will show that an 
equivalent surface profile acounting for both dielectric contrast and topography can be 
introduced[4]. An inversion procedure based on the knowledge of the impulse response 
will be described[6, 7, 8]. Some numerical simulations will be presented. It will be 
shown that the reconstruction procedure enhances the resolution. 

Two usual ways of producing images are the constant height mode and constant 
intensity mode. We will show that in the regime where perturbative analysis is valid, 
these two modes yields the same images. Finally, we shall discuss the implications of 
reciprocity in near-field optics. 



1. Courjon, D. and Bainier, C. (1994) Near-field microscopy and near-field optics, Rep. 
Prog. Phys. 57, 989-1028. 
2. Pohl, D.W. (1992) Nano-optics and Scanning Near-Field Optical Microscopy, in R. 
Wiesendanger and H. J.Güntherodt (ed.), Scanning Tunneling Microscopy II,   Springer- 
Verlag, Berlin, pp. 233-271. 
3. Carminati, R. and Greffet, J.J. (1995) Two dimensional numerical simulation of the 
Photon Scanning Tunneling Microscope. Concept of transfer function., Opt. Commun. 
116,316-321. 
4. Greffet, J.-J. and Carminati, R. Theory of imaging in near-field microscopy 1-1-26 
(Kluwer Academic Publishers, 1996). 
5. Carminati, R. and Greffet, J.J. (1995) Influence of dielectric contrast and topography 
on the near field scattered by an inhomogeneous surface, /. Opt. Soc. Am. A 12, 
6. Greffet, J.-J., Sentenac, A. and Carminati, R. (1995) Surface profile reconstruction 
using near field data, Opt. Commun. 116,20-24. 
7. Carminati, R., Greffet, J.-J., Garcia, N. and Nieto-Vesperinas, M. (1996) Direct 
reconstruction of surfaces from near-field intensity under spatially incoherent 
illumination, Opt. Lett. 21,501-503. 
8. Garcia, N. and Nieto-Vesperinas, M. (1995) Direct solution to the inverse scattering 
problem for surfaces from near-field intensities without phase retrieval, Opt. Lett. 20, 
949-951. 



Light Scattering From Bodies Either in Front or Behind 
Corrugated Interfaces 

M- Nieto-Vesperinas and A. Madrazo 
Instituto de Ciencia de materiales, C.S.I.C. 

and Departamento de Fisica de la Materia Condensada 
Universidad Autonoma , C-III, Madrid 28049, SPAIN 

Abstract 

We shall present a study of the scattering of light and other electromagnetic waves from 
systems formed by a corrugated interface with a body either in front or behind it. 

We shall show how the solution of this problem can be of interest in several practical 
situations, namely, in achieving superresoluiton of the surface corrugation by near field op- 
tical microscopy, or, reciprocally, in the detection of objects hidden behind randomly rough 
surfaces. 

As regards surface characterization, we shall show how the presence of a body close to 
the surface transfers all the information of the near field into the far zone by scattering on 
it. This is the basis of recently developed near field optical microscopes in which light is 
scattered into the far zone by metallic particles or STM tips, thus dramatically increasing the 
resolution over that of previous SNOM systems, and, hence allowing resolution in the range 
of a few nanometers [l]-[3]. In our work we explicitly show how this process of conversion of 
the near field into the far field is achieved. 

Concerning hidden object detection [4], [5], we shall show how their presence behind 
rough surfaces can be detected due to the dramatic increase of the backscattering peak that 
they produce. 
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Scattering and imaging of rough surfaces 
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Scattering by rough surfaces in the Kirchhoff approximation is considered in terms of 
three-dimensional spatial frequencies. This has some advantages for understanding general 
trends of scattering behaviour, and allows the inverse problems of determining profiles or 
their statistics from scattering measurements. 

In recent years considerable advances have been made in the rigorous 
theories of surface scattering. A variety of methods have been employed, 
including differential methods, based on coupled wave or modal methods, 
and integral equation methods. However, whilst such approaches have 
been useful in explaining specific phenomena, such as enhanced backscatter 
for example, they suffer from the problem of mathematical complexity, 
which results in the following limitations: 

•It is difficult to extract overall trends in the behaviour. 
•The problem of scattering by two-dimensional surfaces, including 

skew rays, is computationally difficult. 
•Studies of imaging of rough surfaces, including investigation of speckle 

phenomena, are computationally intensive. 
•Integration  over  scattering   (as  in  total  integrated  scatter,  TIS, 

measurements) or incidence angles is computationally intensive. 
•Inverse problems of determining surface profiles or their statistics from 

scattering data are generally intractable. 

The Kirchhoff approximation has been shown to give good prediction of 
the scattered light under the conditions that the radius of curvature of the 
profile is large compared with the wavelength, the surface slope is small 
enough so that shadowing effects or multiple scattering are negligible, 
scattering angles are not too large and vectorial effects are not important. It 
should be noted that the Kirchhoff approximation is valid for rough 
surfaces, with height variations of many wavelengths, as long as the above 
conditions are satisfied. 

Scattering can be specified by the scattering function, which gives the 
complex amplitude of the scattered plane wave components for a given 
incident wave. For a random surface profile we can specify the BRDF 
(bidirectional reflectance distribution function), which gives the intensity of 
the scattered waves. Both these quantities satisfy the reciprocity property, 
which is valid in general, even with loss and multiple scattering. 

The scattering function for a surface of profile g(x,y) is given by1'2 



S(P) = fjJ JP(Z - C(xfy))exp{-ikp . r}dr (1) 

where 

\V2      /„ ,        ,\l/2 (2) 

p = pi + q j + sk 

k=2n/X 

and /?,, qv p2, q2 are the direction cosines of incidence and scattering. The 
three-dimensional (3-D) spatial frequencies p,q,s represent particular 
directions for incident and scattered light. 

The form of Eq.l is seen to be very simple compared with expressions in 
terms of polar coordinates. We can see that 

1) The scattering is constrained within a sphere of radius |p| = 2, which is 
the well-known Ewald sphere. 

2) The scattering, which is in general a function of four direction cosines, 
two for incidence and two for scattering, becomes only a function of three 
quantities, the three-dimensional spatial frequencies. 

3) Each point in p space represents two reciprocal scattering situations. 

4) Scattering over a range of scattering angles, or incidence angles, can be 
determined by integration over the 3-D spatial frequencies. 

To model imaging of the surface, the image can be calculated by integrating 
over the incident and scattered plane waves. This can be done using 
rigorous3"5 or Kirchhoff6"8 scattering data. The scattering data has to be 
multiplied by the 3-D transfer function of the optical system before 
integration.9-12 

The confocal surface profiling method consists of finding the axial 
position, for each point of the surface, of the peak in intensity of the 3-D 
image.13 We have investigated numerically this algorithm for 
reconstructing a surface profile from scattering data.14 Then after finding 
the axial position of the peak intensity we recover the surface profile. The 
confocal profiling method can thus be regarded as a non-linear 
reconstruction based on the Kirchhoff approximation. Alternative 
algorithms15 are based on interference microscopy.16-17 



Imaging of stratified media can also be modeled by a similar procedure.18 

For weak changes in refractive index, but including multiple reflections, the 
image amplitude can be inverted to reconstruct the profile.19 Generalizing 
to the case of a 3-D distribution of refractive index, a scattering potential can 
be defined20 for reflection imaging. Similar methods can be used for 
transmission based on the Born or Rytov approximations.7'19 

Turning now to random surface profiles, the BRDF for an isotropic rough 
surface, neglecting the coherent specular reflection, is21'22 

4    - 

BRDF = J9L_J[£2(,-j)- x(s)x'(s)]fQ(klT)TdT 
ZAS ° (3) 

where x(s) is the characteristic function associated with the height 
variation, j2(^,-5) is the joint characteristic function of the distribution, 
and 

£ = k(p2
+q2)m (4) 

is the normalized radial transverse spatial frequency. For the important 
case of a surface governed by a normally distributed continuous stationary 
random process with zero mean, with a distribution function w(g) of 
heights g 

w(g) = —^rexp(-g2/2o2) (5) 

where a is the RMS surface height we then have22 

BRDF = ^-j \ expf-fcVcr2) j[exp(k2s2(72C(t)) - \}j0(k£Lt)t dt \ (6) 

were C(t) is the correlation coefficient and t = r/L with L the correlation 
length. 

The expression in braces in Eq.6 for the isotropic case is a function of two 
dimensionless parameters ksa, kit which can be regarded as normalised 
roughness and correlation length, or alternatively as normalised axial and 
transverse spatial frequencies. The behaviour with variation of wavelength 
is also immediately apparent. 

The BRDF has been calculated from Eq.6 for random surfaces with a 
variety of statistics such as a Gaussian correlation coefficient21 or a surface 
with exponential correlation (fractal with an outer scale).23 Eq.6 also shows 
that if the BRDF is known the correlation coefficient can be recovered by an 
inverse Hankel transformation. 22 



It is straightforward to integrate Eq. 6 over scattering angles to calculate 
the total integrated scatter24 in the Kirchhoff approximation and find a 
resultant correction factor for a Gaussian random surface, for example. If 
the correlation length is too small, or the rms surface height too large, for 
the TIS to be proportional to the roughness, the correction factor allows the 
correct roughness to be predicted. 
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Nonlinear and Linear Inverse Scattering 
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This presentation is part of a joint project with Dale Winebrenner of the 
Applied Physics Laboratory at the University of Washington. The focus of 
the project is to probe the electro-magnetic properties, and, in particular, 
the depth of sea ice via microwave remote sensing. 

We model the ice as a medium with index of refraction depending only 
on depth with the incident field being a plane wave. Ice is a lossy medium, 
but what I will describe here are features of a lossless, non-dispersive model. 
There are, apparently more complicated, analogs of everything I will describe 
here for the model which includes loss, but the theory is not yet complete. 

The lossless remote sensing problem for a medium which depends only 
on depth leads to a 1-dimensional scattering/inverse scattering problem. By 
forward scattering, we mean the mathematical problem of calculating the 
complex valued (amplitude and phase) reflection coefficient at various fre- 
quencies given a hypothetical non-dispersive index of refraction. By inverse 
scattering we mean the opposite, the calculation of the index of refraction 
from a (potentially very noisy) complex reflection coefficient over a wide fre- 
quency band. 

The only feature of this one dimensional inverse scattering problem which 
makes it more than a simple question in signal analysis is the presence of mul- 
tiple reflections.  If we ignore these multiple reflections, the scattering and 



inverse scattering problems become linear and much more tractable. We shall 
refer to (idealized) scattering without multiple reflections as Linear Scatter- 
ing. In the language of mathematicians, linear scattering is the (Frechet) 
derivative of nonlinear scattering at the constant background. 

The moral of this lecture is that a surprising number of the main features 
of linear scattering have exact analogs for nonlinear scattering (i.e. in the 
presence of multiple reflections) 

In order to be more specific, we need to cast linear scattering in its most 
transparent form. We will need to write down a few formulas and will in- 
troduce new independent and dependent variables. Instead of the physical 
depth coordinate, z, we will use the travel time depth x(z) defined via the 
formula: 

(1) x(z) = fZn(s)ds 
Jo 

where n denotes the index of refraction.   Secondly, we will denote the 
variation in the logarithm of the index of refraction with respect to travel 
time by a; that is, 

(2) «M-*^ 
It is possible to compute the index of refraction as a function of the 

physical depth, from its logarithmic variation, a, as a function of travel time 
depth - this requires solving a single nonlinear ordinary differential equation. 

With these new variables the linear scattering transformation becomes 
exactly the the Fourier transform, i.e. 

(3) rL{u) = a(uj):= [0e-2i"xa(x)dx 

The subscript L is to emphasize that this is the linear reflection coeffi- 
cient, which doesn't account for multiple reflections. 



Basic Tools and Features of Linear Scattering 

The Plancherei Equality 

f" \rL(u)\2du =j[°  a{xfdx 

This equality says a lot about the stability of any linearized inversion 
process. It tells us that the linearized reflection coefficient of a square 
integrable a will also be square integrable, and should therefore be 
calculated in terms of a basis of square integrable functions. 

First and Last Reflections (Paley-Weiner Theorem) 

Think for a moment about the reflection of a pulse in the time domain. 
There is a well defined first arrival time, when the first reflection is 
detected, and, in the absence of multiple reflections, there is also a 
well defined last arrival time. Thus it is possible to locate the top and 
bottom of an inhomogeneous perturbation of a constant background 
from reflection data in a simple way. The Paley-Weiner Theorem is the 
mathematical statement of how to detect the support of the variation 
(the places where a is nonzero) from its Fourier transform. 

The Shannon Sampling Theorem 

If the inhomogeneity has a finite depth, D, then it is sufficient to sample 
TL at discrete frequencies spaced ^ apart. 

The Hubert Transform and Causality 

Any function / can be decomposed into it's it causal and a-causal 
pieces. 

/ = /+ + r 
If we apply this decomposition to e~2,u,Dr£,(u;) we decompose r into the 
parts of the reflection generated by reflections below and above (travel 
time) depth D. For a pulse in the time domain, this corresponds to the 
parts of the reflected wave that arrive after and before time D . 

We call /+ the Hubert transform of /. The decomposition is orthogonal 
with respect to the norm in the Plancherel equality, i.e. 

f°°\f\2du= r\f+fdu;+ Tlf-fdw 
J—oo J—oo J—oo 



Basic Tools and Features of Nonlinear Scattering 
The point of this lecture is that the tools of linear scattering which we listed 
above have nonlinear analogs. We list them below: 

The Nonlinear Plancherel Equality 

^ log(l - \r(u>)\2)cL; = j f°  a(x)2dx 
J—oo 4 J—oo 

This guarantees stability of the nonlinear inverse scattering problem in 
the same way the linear equality does for the linear scattering problem. 
Notice that it includes the restriction that |r(u>)| < 1. In fact, in [1] it 
is proved that any causal function for which the integral on the left is 
finite is in fact a reflection coefficient. 

First and Last Reflections (Paley-Weiner Theorem) 

The first arrival of a reflected pulse is the same for linear and non- 
linear scattering — multiple reflections haven't had time to interfere. 
However, the nonlinear response to a pulse has no last arrival time. 
If the scattering is strong, this last reflection from the bottom can be 
completely obscured by multiple reflections at higher depths. However, 
if one computes the quantity (1_^A|2)' *^en ^s mverse Fourier trans- 
form will have a last arrival time which is exactly the travel time depth 
to the bottom. Although we don't indicate the reasons here, this is 
actually a consequence of duality based on the nonlinear Plancherel 
equality above. The inverse Fourier transform of (1_,\ ,,^ has a last 
arrival time as well, which measures the width of the inhomogeneity in 
travel time. 

The Nonlinear Sampling Theorem 

Because of the paragraph above, the linear sampling theorem can be 
applied to ,. ffi/mx and to ,. ,\ ua>, so that each can be calculated 
exactly from the sampled values or r at discrete frequencies. As r is 
just the ratio of these two, it too can be exactly calculated . 

The Nonlinear Hubert Transform 

One way to see that the linear Hilbert transform is inappropriate for 
nonlinear scattering is to recall that the nonlinear reflection coefficient 
must always have modulus less than or equal to one. The linear Hilbert 



transform does not preserve this property. It turns out that there is a 
nonlinear analog which does separate a reflection coefficient into causal 
and a-causal parts. Instead of decomposing into a sum, a reflection 
coefficient decomposes uniquely into a star-product of a causal and a- 
causal part. That is, 

1 + /-/+ 

If we apply this decomposition to e~2tuDr(u), r+ roughly represents the 
reflections generated below (travel time) depth D. This decomposition 
is the basic step in the implementation of the layer stripping algorithm 
described in [1]. 

This decomposition is orthogonal with respect to the nonlinear norm 
in the nonlinear Plancherel equality, i.e. 

r iog(i - I/I2)<L, = r iog(i - m2)\2du + r iog(i - \r n^ 
J—oo J—oo J—oo 
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1. INTRODUCTION 
This work is motivated by the problems encountered in using radar as a geophysical 

probe. For these applications, the radar antenna is positioned above the earth, often on a 
satellite [E], an airplane, or a tall gantry. In many cases it is reasonable to approximate 
the earth as an infinite half-space £3 < 0. The upper half-space is assumed to be composed 
of dry air, whose electromagnetic characteristics we assume to be those of free space (i.e., 
vacuum). Electromagnetic measurements are made in the upper half-space, and from 
these measurements one hopes to reconstruct the electromagnetic characteristics of the 
lower half-space. 

In this paper we consider a simplified scalar model that includes not only the variable 
speed of wave propagation but also the dissipation. This model is also appropriate for 
acoustic wave propagation. 

The propagation of electromagnetic waves is governed by Maxwell's equations, which 
we write in the form 

V A E = iufiH (1.1) 

VAH = (a-iue)E. (1.2) 

Here E is the electric field, H the magnetic field, e the electric permittivity, /x the mag- 
netic permeability, and a the conductivity. These equations are obtained from the time- 
dependent equations by assuming a time dependence of e~xut. We will take u> to be positive 
throughout. 

In many cases of interest, the magnetic permeability is very close to the permeability 
of free space; accordingly we assume /J, = JIQ. If we write out the six scalar equations of 
(1.1) and (1.2), and assume that e, a, E, and H are independent of one of the coordinates, 
say X21 then we find that the six equations decouple into two sets of equations, one set 
for Hi, E2, and H3, and the other set for E\, H2, and E3. These determine independent 
polarizations, the former called the Transverse Electric (TE) polarization and the latter 
called the Transverse Magnetic (TM) polarization [J]. 

The equations for the TE polarization reduce to 

(V2+u2/j.oe + iufio<r)E2=0, (1.3) 

where the Laplacian is a two-dimensional one in the xx and £3 variables. We assume that 
the upper half-space (2:3 > 0) is air, which we approximate by the same electromagnetic 
parameters as free space, namely e = e0, a = 0. We will write k = OJ/CQ, where CQ = 
(/•*()eo)-1'2 is the speed of light in free space. We will consider only k positive. In addition, 
we write n2 = e/e0 and m = ay/ßo/eo- With this notation, (1.3) becomes 

(V2 + k2n2 + ikm)E = 0, (1.4) 

where we have dropped the subscript on E. 

In what follows, we will develop the theory for (1.3) and (1.4) when the Laplacian is 
a three-dimensional one; the theory for the two-dimensional case is similar. Both n2 and 
m are assumed nonnegative. We assume that n2 is identically one in the upper half-space, 
and in the lower half-space, n2 differs from a positive constant n2_ only in a region of 



compact support. Similarly m is identically zero in the upper half-space, and in the lower 
half-space differs from a positive constant m_ only in a region of compact support. These 
assumptions are meant to include the case of an ice floe in sea water. The parameter values 
for sea ice in the gigahertz range are between 3 and 4 for n2 and around 6 m-1 for m. For 
sea water, n2_ is 3.37, and the value of m_ is around seven thousand m-1 [Ca]. We will 
write x = {x\,X2,xz) = (x',X3). 

The arguments given here would need to be modified in order to apply to cases when 
the background medium has more layers, and for the case when the perturbation extends 
into the upper half-space. 

The theory of scattering from a half-space for (1.4) in the non-dissipative case (m = 0) 
has been developed in [Wi, DG, We, Xu]. The layered problem has been investigated by 
many investigators. In particular, the papers [Chj, M, KK] show that backscattered data 
from a single incident plane wave suffices to determine both n2 and m only if n2 and m 
have a jump discontinuity. An abstract formulation of scattering for dissipative hyperbolic 
systems has been given in [LP]. 

2. FORMULATION OF THREE INVERSE PROBLEMS 

When a layered half-space is perturbed, some thought must be given to the formulation 
of the direct and inverse scattering problems. For the direct problem, one commonly- 
used approach [TKS] is to assume an incident plane wave and then use a half-space or 
layered-medium Green's function to set up an integral equation. The solution of this 
integral equation defines the scattering solution, whose far-field asymptotics are taken to 
be the scattering data. Inverse problems involve using this scattering data to determine 
perturbations in the medium. 

One problem with this approach is that in practice, the incident field is never infinite 
in extent. This is unimportant if energy from infinity has no effect on the scattering, but 
for some layered medium problems this may not be the case. One can avoid this difficulty 
by multiplying the incident field by a cut-off function meant to model the antenna beam 
pattern, but the form of this cut-off function certainly does affect the scattering, and it 
is difficult to find a simple way to retain the information about the incident field in the 
far-field pattern. One approach to this is in [GX]. Below some other methods are suggested. 

THE DIRECT AND INVERSE SCATTERING PROBLEM. 

For any incident field, solutions to the direct scattering problem can be constructed 
in the usual way by converting the differential equation (1.4) to an integral equation that 
builds in the boundary conditions at infinity. The kernel of this integral equation is a 
Green's function for the unperturbed problem with outgoing boundary conditions. The 
details are given in Appendix 1. 

To define scattering data, we consider the field E in the upper half-space. We define 
the scattering operator S to be the map from the downgoing part of the wavefield to 
the upgoing part. We construct an explicit representation S of this map in the Fourier 
transform domain. In particular, we use the fact that the medium parameters are known 
and constant in the upper half-space. For x$ positive, one can therefore Fourier transform 
(1.4) in the x\ and X2 coordinates. The result is an ordinary differential equation whose 



general solution for X3 > 0 is 

E((,x3) = A(OeiX+x* +B(Oc_,'A+Xl, (2.1) 

where A+ = y/k2 — |£|2 and the hat denotes the two-dimensional Fourier transform 

Mt, *s) = / E(x', x3)e-^x'dx', (2.2) 

x' denoting (xi, X2). When A+ is zero, the general solution corresponding to (2.1) is simply 
a constant. When |£| < k, the B term in (2.1) is a downgoing wave, whereas the A term is 
upgoing. The coefficient B thus determines an incident wave. This incident wave, together 
with continuity of E and its normal derivative at the interface X3 = 0 and a radiation 
condition in the lower half-space, uniquely defines the scattered wave, which determines 
A. (See Appendix 1 for details.) Consequently, we can define S as the map from B to A. 
Thus S maps incident fields to scattered fields; knowledge of S is equivalent to knowledge 
of the scattered fields corresponding to all incident fields in some class. In particular, S can 
be considered as a map on the space L2(R2) of square-integrable functions. The operator 

5 is then defined by Sf = Sf. 
If |£| > k, then the second term on the right side of (2.1) grows exponentially as X3 

becomes large. Because it is not physically reasonable for the incident wave in a scattering 
experiment to be exponentially large at infinity, in the scattering case we take B to be 
zero for |£| > k. For these values of £, the scattered wave also decays exponentially as X3 
goes to infinity; thus for a scattering experiment in which measurements are made in the 
far field, the relevant scattering operator is PSP, where P denotes the projection operator 
of multiplication by the function that is one for |f | < k and zero for |£| > k. Appendix 3 
contains a proof that PSP, as a map on a certain L2 space, has norm less than one. 

In the case when the incident wave is a plane wave independent of X2, making an 
angle 9 with the vertical, B is a delta function supported at £ = (k sin 9,0). If the lower 
half-space varies only in the depth coordinate X3, then S = PSP is simply multiplication 
by the usual reflection coefficient [To, TKS]. Thus data from a single angle of incidence 
6 defines the action of S on 8(£ — k(sin9,0)). As 9 varies and the incident beam rotates 
around the vertical axis, the set {|£| < k} is swept out. Thus knowledge of S incorporates 
knowledge of scattering for all angles of incidence. 

This definition of scattering data differs from that in [TKS, Xu, We] in that no far- 
field asymptotic expansion is needed. The present definition may thus be useful in cases 
when measurements are made close to the surface. The present definition can handle any 
antenna beam pattern. However, this definition has the disadvantage that measurements 
are needed everywhere on a horizontal surface to completely determine S. This makes it 
unsuitable for use with satellite-borne radar. If n2 and m are assumed to depend only 
on X3, then S can be determined for all £ with magnitude less than k by measuring the 
reflection coefficient for all angles of incidence. 

The inverse scattering problem is to determine n2 and m in the lower half-space from 
knowledge of S. In the three-dimensional case, if S is thought of as an integral operator 
mapping functions of two variables to functions of two variables, it is clear that S depends 



on four variables. The unknowns n2 and m depend on only three variables, so this inverse 
problem is overdetermined in the three-dimensional case. In the two-dimensional case, S, 
n2, and m are all functions of two variables. 

THE POINT SOURCE INVERSE PROBLEM. 
Another way to define scattering data is to assume that the incident field is due to a 

point source located either on the surface £3 = 0 or in the upper half-space. In this case, 
(1.4) becomes 

(V2 + fc2n2 + ikm)G(x, y) = -6{x - y), (2.3) 

where y is the location of the source. To define G uniquely, one needs an outgoing radiation 
condition at infinity. (See Appendix 1 for details.) Scattering data in this case can be taken 
to be knowledge of G(x, y) for all x with x$ = constant and all y with y$ = constant. 

The point source inverse problem is to determine n2 and m in the lower half-space 
from the scattering data. In the three-dimensional case, the scattering data depend on 
four variables; in the two-dimensional case, on two. 

THE INVERSE BOUNDARY VALUE PROBLEM. 
A boundary value problem can be defined by 

(V2 + k2n2 + ikm)u = 0 for x3 < 0 (2.4) 

«|x3=o = /, (2.5) 

together with an outgoing radiation condition in the lower half-space. If / is in the Sobolev 
space H1'2 and m > 0, the Lax-Milgram theorem can be used [T] to show that the 
boundary value problem (2.4), (2.5) has a unique H1 solution in the lower half-space. (A 
more explicit construction, involving Green's functions, is given in Appendix 2.) Thus the 
normal derivative du/du on the surface £3 = 0 is uniquely determined. The mapping from 
Hx'2 to if"1/2 

A:u|l3=o-^|i3=0 (2.6) 

is called the Dirichlet-to-Neumann map. Such maps have been used a great deal recently 
in the study of inverse problems [SU, SCII, Sy]. 

The inverse boundary value problem is to determine n2 and m in the lower half-space 
from knowledge of A. In the three-dimensional case, A depends on four variables; in the 
two-dimensional case, it depends on two.. 

For some purposes, it is more convenient to work with the inverse of A; this inverse 
can be defined directly in a similar way. 

3. CONNECTIONS BETWEEN THE SCATTERING PROBLEMS AND THE BOUND- 
ARY VALUE PROBLEM 

In this section, we discuss the sense in which the above inverse problems are equivalent. 

The scattering problem and the boundary value problem. To see how the scat- 
tering problem is related to the boundary value problem, we recall that E and its normal 



derivative are continuous at the interface x$ = 0. In the upper half-space, however, E is 
given by (2.1). If E = / on X3 =0, then we have 

f = (S + I)B, (3.1) 

where / denotes the identity operator, and, differentiating (2.1) with respect to X3, 

Af = iX+(S-I)B. (3.2) 

Eliminating B from (3.1) and (3.2) and defining A/ = A/, we have . 

A(S + I) = i\+(S - I). (3.3) 

This is an operator equation that holds on a certain function space that is discussed in 
Appendix 3. 

To recover A from 5, it appears that we need only invert the operator. S + I appearing 
on the left side of (3.3). To find the inverse, we solve the system (3.1), (3.2) of linear 
equations for B, obtaining B = |(J — (i\+)~1A)f. This shows that 

(5 + J)-1=^(/-(a+)-1A). (3.4) 

This expression itself can be used to recover A from S. 
A similar argument shows that 

(/-(a+r^n^os+i); 
this expression can be used to obtain S from A. Note that this formula and (3.4) each 
contain terms with a singularity at A+ = 0. This is to be expected because S is not defined 
at A+ = 0. 

The point source problem and the boundary value problem. To see how the 
point source problem is connected to the boundary value problem, we follow [N], where 
this connection was worked out for the case of a bounded body. We write q = k2n2 + ikm 
and 50 = k2 so that the perturbed and unperturbed point source problems can be written 

(V2 + q)G = -6 (3.5a) 

and 
(V2 + q0)G0 = -6, (3.5b) 

respectively. The scattering solutions G and Go satisfy radiation conditions at infinity. 
We write Ag and A0 for the Dirichlet-to-Neumann maps for the operators V2 + q and 

V2 + qo, respectively. We next use the scattering solutions G and Go to define two integral 
operators, 

T/(x')=   lim    [G((x',0),(y',y3))f(y')dy' (3.6a) 
!/3->0- J 



and 

r0/(x')=   lim       Go((x',0),(y',y3))f(y')dy'. (3.6b) 
»3—0-  J 

Theorem. G is related to Aq by the "boundary resolvent equation" 

r-r0 = r0(A?-Ao)r. (3.7) 

For the proof of this theorem, we need the following notation and lemma. 
Given any / denned on the surface x$ = 0, we use Tf to define the solutions u and v 

of the following boundary value problems: 

(V2+9)u = 0 (3.8) 

uU3=o = Tf (3.9) 

and 
(V2+q0)v = 0 " (3.10) 

v|.a=o = Tf. (3.11) 

Both u and v are outgoing at infinity in the lower half-space. 
Lemma. The solution u to (3.8), (3.9) is actually given by 

u(x)= f      G(x,y)f{y)dy. (3.12) 
^y3=o 

Proof. The function defined by equation (3.12) is an outgoing solution to (3.8), which 
on the boundary £3 = 0 is equal to Tf. 

QED 

Proof of Theorem. Here we carry out the argument of [N] for the half-space case. 
Relation (3.7) is obtained by using two different methods to compute the integral 

I(x) = /       (Go(x - y)V2(u - v)(y) - (u - v)(y)V2G0(x - y)) dy. (3.13) 
*/j/3<0 

This integral is the limit as h goes to infinity of the integral Ih, in which the integrand 
is the same but the region of integration is Ch, a large cylindrical region with radius h2 

whose top is a disk in the plane 3/3 = 0 and whose bottom is a disk in the plane j/3 = —h. 
First, by Green's theorem, 

Ih= I    (God^u -v)-(u- v)d„G0)dA, (3.14) 
JdCh 

where dv denotes differentiation with respect to the outward unit normal and dCh denotes 
the boundary of Ch- The boundary of Ch has three parts: the disk of radius h2 on the 
surface j/3 = 0, the disk of radius h2 on the surface y3 = —h, and the side of the cylinder. 
We denote the corresponding integrals by i|, I2., and 1%, respectively. 



First we consider I\. Because u = v on y$ = 0, the second term of I\ vanishes. Taking 
into account definitions of To and the Dirichlet-to-Neumann maps, we find that for x with 
x$ = 0, the first term is equal to To(Agu — Aou) = To(A? — Ao)r/. 

The integrals 7| and i| vanish as h goes to infinity because of the asymptotics of Go. 
(See Lemma Al.2 in Appendix 1.) 

Thus we have shown that 

I|x3=o = r0(A9 - A0)r. (3.15) 

On the other hand, we can compute I without using Green's theorem. We see from 
(3.5), (3.8), and (3.10) that 

I(x)= 7       (G0(qoV-qu) + (u-v)qQGo)dy-(u-v)(x). (3.16) 

The terms in (3.16) involving qoGov cancel. Moreover, as x approaches the surface x3 = 0, 
the term (u — v)(x) vanishes. Thus (3.16) becomes 

1=1        G0(q-qo)udy. (3.17) 
Jy3<o 

The solution u of the boundary value problem, however, is given by u = j Gf. Using this 
in (3.17), interchanging integrals, and using the resolvent equation G — Go — / Go(q — qo)G, 
we obtain 

J|x3=o = /     (G - G0)fdy' = Tf- To/. (3.18) 

QED 

In order to use (3.7) to obtain the Dirichlet-to-Neumann map from knowledge of the 
point source data, we need to be able to invert the integral operators T and r0. This is 
discussed in Appendix 1. 

Similarly, to obtain the point source data from the Dirichlet-to-Neumann map, one 
needs invertibility of the map I — T0(A.q - A0) = r0r

_1, which follows from invertibility 
of T and To. 

4. THE INVERSE BOUNDARY VALUE PROBLEM 
Because the inverse scattering and inverse point source problems can be converted 

into the inverse boundary value problem, it is this problem we address here. We outline 
a possible approach, one based on the idea of layer-stripping. Roughly, the idea is first 
to use the measured data to find the medium parameters on the boundary, then to use 
that information to synthesize data on a nearby inner subsurface. The process is then 
repeated. In this manner, the medium is mathematically stripped away, layer by layer, 
and the medium parameters are found in the process. 

For one-dimensional problems, this is an old idea; we make no attempt to trace its 
history here.   For multidimensional problems it has not been so clear how to proceed; 

8 



various multidimensional layer-stripping algorithms have been suggested in [CK, SCII, W, 
Sm, DH, Y]. We outline here a simple way to formulate a multidimensional layer-stripping 
procedure. 

Most of the layer-stripping schemes involve some sort of Riccati equation to remove 
a known layer of the medium. A Riccati equation, moreover, can be useful as a theoret- 
ical tool in working with inverse problems [LU]. As we see below, using the Dirichlet-to- 
Neumann map makes the appearance of a Riccati equation especially easy to understand. 

Synthesizing the subsurface data. To synthesize the subsurface data, we obtain 
a differential equation for the boundary data in the depth variable. This requires that we 
extend the definition of the Dirichlet-to-Neumann map to any z < 0: 

This map satisfies the following Riccati equation: 

dA 

dz 
-A'-(^+$,)-*. (4.2) 

This equation is obtained by differentiating (4.1) with respect to z, using (2.4) to eliminate 
d2u/dz2, and using (4.1) to eliminate du/dz. 

We note that equation (4.2) together with (3.3) or (3.4) can also be used to obtain 
a differential equation for the scattering operator S. In the case when dS/dz commutes 
with S (such as in the layered case when S is a multiplication operator), this differential 
equation has the form 

2iA+^ = X2
+(S - I)2 + (S + I)2\Z\2 -(§ + I)2Q, (4.3) 

where Qf = qf. 
Finding the medium parameters on the boundary. To solve the inverse prob- 

lem, we also need to use the boundary data to find the medium parameters on that same 
boundary. One approach to doing this is to use the idea of [KV, SCII] that is based on 
the principle that highly oscillatory boundary data corresponds to waves that penetrate 
only a short distance into the body. The difficulty with this approach, however, lies in 
the practical problem of creating such a field on the boundary: even in a nondissipative 
homogeneous medium such as air, fields with rapid spatial oscillations decay exponentially. 
This can be seen by writing a solution of 

(V2 + qQ)u = 0 (4.4) 

as u(x) = u(£, x3)exp(i£ • x'), so that v satisfies the ordinary differential equation 

(d2
X3 + go - (2)v = 0. (4.5) 

Even when go is real, for large £ the solution v decays exponentially. This suggests that 
conventional radar experiments, in which the antenna is far from the sample, could not 
supply highly oscillatory boundary data. 



Accordingly, we consider an alternate method for obtaining the medium parameters 
on the boundary, namely geometrical optics [SU2]. This requires that we use either a range 
of temporal frequencies u or that we do the experiments directly in the time domain. 

The time-domain version of (1.3) is 

(V2 - fi0ed2 - fio<rdt)£ = 0. (4.6) 

The plan is to obtain a progressing wave expansion [CH] for (4.6); an expansion in functions 
of <f>(x) — i, however, results in successive coefficients differing in magnitude by the speed 
of light co- We therefore make the change of variables r = cot, which converts (4.6) into 

(V2 - n2d2
T - mdT)U = 0. (4.7) 

We are interested in the small-time behavior of U in the neighborhood of an interface at 
x3 = 0. For Xz > 0, where n = 1, we expect that U is composed of an incident plane wave 
U% = /delta(sx(x) — r) plus a reflected wave, which we expand in the form 

Ur(sr(x) - T) = Ar
0(x)S{sr(x) - T) + A\(x)H{sr(x) - r) + • • •. (4.8) 

Here s% and sr are the incident and reflected phases, 8 denotes the Dirac delta function, and 
H denotes the Heaviside function that is one for positive arguments and zero for negative 
arguments. We take 1AX to be a plane wave propagating in direction e = (ei, e2, 63), which 
implies that sl = e • x. Because we take this wave to be propagating in the downward 
direction, e^ is negative. Just below the interface, for a short time we expect U to take 
the form of a transmitted wave, which we also expand as 

WV(x) - r) = Al{x)8{s\x) - r) + A^x^s^x) - r) + • • •. (4.9) 

Here again 5* denotes the phase of the transmitted wave. On the interface X3 = 0, U and 
its first X3 derivative are continuous. Using these conditions at the interface and forcing 
U to satisfy (4.7) results in the eikonal equation 

(ysf = n2, (4.10) 

the interface conditions 

s'lx^o = 5r|x3=0 =5*1x3=0, (4.11) 

and the transport equations 

2Vs- VA0 + A0V
2s + mA0 =0 (4.12) 

2Vs • VAi + Ai V25 + mA-L + V2A0 = 0. (4.13) 

Here the absence of superscripts r or t indicates that the equation in question holds for 
both the reflected wave and transmitted wave. Solving these equations gives us 

sr(x) = eixi +e2x2 - e3x3 (4.14) 
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Vst{x) = {eue2,-yjn> -e\-el) (4.15) 

^|I3=U_ ! + V"2 ~ ei ~ 4/e3 ,416x 
1 - -</n2 - e\ - e\fez 

1 - y/n2 -t\- e\jtz 

ft    A* — ft    Ar 

A[\X3=0 =     9*>A;     d*f° 9. (4.18) 
e3 - Vn   ~ ei ~~ *2 

The quantities dX3Al and öl3Ao appearing in (4.18) can be computed, with the help of 
the transport equation (4.12), to be 

dX3A
r

0 = (ei0Xl + e2dX2)A
r

0/e3 (4.19) 

and 

d**< = ~X
2       2(

r(a„)/ng-ef-e»AS-mAS)/2-(e1axi+e2aga)i4sY  (4.20) 

To obtain the medium parameters n2 and mat a point x° on the surface from scat- 
tering data, we send in an incident wave that is planar in a neighborhood of x°. We then 
measure the scattered field at all points on a plane £3 = constant. From this information, 
the short-time scattered field can be inferred in a neighborhood of x°. The value of AQ at 
x° tells us, via (4.16), what the value of n2 is at x°. In this manner, we obtain n2 for every 
point on the surface; this allows us to compute, at every point, not only A*0 from (4.17) 
but also the x\- and x2-derivatives appearing on the right side of (4.19) and (4.20). Once 
these are known, dX3Al can be computed and used in the right side of (4.18); since A\ 
is also known, from (4.18) we can obtain dX3Al. All quantities in (4.20) are thus known 
except for m and 9l3n

2; evidently both quantities cannot be found from a single angle of 
incidence. Use of the scattered field from two angles of incidence allows us to find both m 
and dX3n

2. 
Let us consider the layer-stripping algorithm in the case when a complete set of in- 

cident fields are used and measurements of the corresponding scattered fields are made 
on a plane. We assume measurements are made at N frequencies. For experiments with 
stepped-frequency radar, for example, N can range from 51 to 801 [Jz]. The algorithm 
proceeds as follows. 

Step 1. From the measurements at frequencies ko, k\,..., k^, construct an approxi- 
mation to each scattering operator S(kn), n = 0,1,..., N. In practice, one would represent 
S(kn) by its matrix with respect to some basis. Such a basis could perhaps be constructed 
from antenna beam patterns for a large number of incident angles. The operator S, for 
example, is the representation of 5 in a Fourier basis. 

Step 2. For each of at least two incident directions ij, j = 1,2,..., J, choose an 
incident field that looks like exp(ifcnej • x) in the neighborhood of some point XQ on the 
surface. Apply S(kn) to these incident fields to obtain the scattered field Eac(kn,x). 
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Step 3. Fourier transform into the time domain to obtain Ur(r, x). In practice, one 
can do this by first synthesizing an approximate delta function in the form 

N 

«$(r)«]Tti,ne,'fc"r, (4.21) 
n=l 

where the wn are, for example, Hamming weights [OS]. Then the field 

N 

Ur{T,x)ttY,E°^X)W«eiknT (4-22) 
n=l 

is locally the response to the incident approximate delta function (4.21). 
Step 4.   Extract the coefficients AQ{XQ,CJ) and A[(xo,ej).   This can be done, for 

example, by the least squares minimization 

fT 

min   /    \Ur(r,x0) - Ar
0(x0,ej)8(sr(x0) - T) - A[(x0,ej)H(sr(x0) - T)\

2
<IT,      (4.23) 

-^o'-^i Jo 

where for Ur one uses (4.22), for sr one uses (4.14), for S one uses (4.21), and for the 
Heaviside function H one uses 

N 

H(T) « £ -TLc''fc"r- (4-24) 
n=l lkn 

Step 5. From Al(xo,ej) and A[(xo,e.j) for j = 1,2, ...,J, determine n2(xo), m(xo), 
and dX3n

2(xo). If J > 2 so that the system is overdetermined, one can use least squares 
to find the best fit. 

Step 6. Repeat steps 2) through 5) for a large number of points xQ on the surface. 
Step 7. For each kn, synthesize the subsurface data either from a Riccati equation for 

S(kn) such as (4.3), or use (3.3) or (3.4) to convert S(kn) to A(kn), use (4.2), and convert 
back to S(kn) with (3.3) or (3.4). Again, in practice, the operators S(kn) and A(kn) would 
be represented as matrices with respect to some basis, and equations (3.3), (3.4), and (4.2) 
would be approximated as matrix equations. 

Step 8. Repeat, starting with step 2). 
Although the above algorithm may seem ready to implement, it cannot be used in its 

present form because it is UNSTABLE. This is partly because of the multiplication by |£|2 

on the right side of (4.3) or equivalently, because of the x\ and 12 derivatives appearing on 
the right side of (4.2). This is similar to the situation in [YL]; this type of instability can 
be overcome to some extent by smoothing in the x\ and x-i directions, as discussed in [C]. 
Even when the problem is independent of x\ and X2, however, one expects the methods 
to be unstable, due to the fact that only a little of the energy put into the system on the 
top can propagate to great depths. Thus one expects the boundary data and scattering 
data to contain little information about the deeper regions. There may be methods, such 
as those of [SCII, SWG], for overcoming this instability to some extent. Finally, there may 
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be difficulties connected with using bandlimiting data as described in [PSS]. Investigation 
of methods for overcoming the instability is left for the future. 

APPENDIX 1. CONSTRUCTION OF SCATTERING SOLUTIONS 
In this Appendix, we will construct outgoing solutions of (1.4) and (2.3). We do this 

with the help of the unperturbed Green's function. 
Construction of the scattering Green's function. The unperturbed scattering 

Green's function Go(x,y) = Go(£i — yi,£2 — 2/2,^3,1/3) satisfies 

(V2 + k2n2
0(x3) + ikm0(x3))Go(x, y) = -6{x - y) (Al.l) 

and is outgoing at infinity. Here n2, = 1 and mo = 0 for £3 > 0, and n2 = n2_ and mo = m_ 
for £3 < 0. Equation (Al.l) can be Fourier transformed in the x\ and £2 variables, which 
yields 

(d2
X3 + A2)Go(£,*3,!/3) = S(x3 - y3), (A1.2) 

where we have written A2, = —|£|2 + k2nl + ikrriQ. The general solution of (Al.2) is 

Gtf (£,*3, V3) = A+(0eiX+x> + B+(0e-'*+x» (A1.3) 

for £3 > 0 and 
G0-(£,z3,y3) = A-(0eiX-x>+B-(0e-iX-x>. (AlA) 

for £3 < 0. The coefficients A^ and B^, however, depend on whether 1/3 is positive or 
negative and are different in the regions separated by the origin and the point £3 = y3. 
When x3 is bigger than both 0 and y3, the condition that Go be upgoing implies that B+ 

is zero; when £3 is less than both 0 and y3, the condition that Go be downgoing implies 
that A~ is zero. Go and its £3 derivative are continuous except at £3 = y3, where Go is 
continuous but its £3 derivative jumps by one. Solving for the As and Bs in both cases 
results in 

GoU,x3,y3j- 2A+ |T(A+)A_)e,A+!,3e-.A_x35 for£3 <0 (AL5} 

for the case when y3 > 0 and 

&o(£,*3,y3) -2XI\ e.-A-|.,-»,l +R(\_,\+)e-i^*°+y>\    for £3 < 0 (^L6) 

for the case when y3 < 0, where 

and 

Al + Ä2 
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Note that since the imaginary parts of A+ and A_ are nonnegative, the exponents in (Al.5) 
and (Al.6) are decaying. The Green's function itself is obtained from its Fourier transform 

by 

Construction of scattering solutions. For an incident wave E°, a scattering 
solution E of (1.4) can be defined as the solution to the integral equation 

E{x) = E\x) + J Go(x, y)V(y)E(y)dy, (A1.9) 

where we have written V(y) = k2(n2{y) — n2_) + ik(m(y) — m_). 
Similarly, for (2.3), the scattering solution G(x,y) at x due to a point source at y 

should satisfy the resolvent equation 

G(x,y) = Go(x,y) + j G0(x,z)V(z)G{z,y)dz. (Al.lOa) 

The Green's function G, however, has a singularity at x = y, which causes some technical 
problems. We therefore write the resolvent equation in terms of the scattered wave G3C, 
which is defined by G = Go + Gsc: 

Gsc = JG0VGO+ f G0VG3C. (Al.lOb) 

In order to use (Al.9) to define E and (Al.lOb) to define G, we must show that both 
equations have unique solutions. 

In order to do this, we will need the following spaces that are weighted in the x$ 
variable. 

£2'*(R3) = {u : (1 + \xz\
2yl2u € X2(R3)} 

H1'3 = {u : D°u E L2'\ \a\ < 1}, 

where we use the multi-index notation a = («1,02,03), |o| = \ai\ + |ö2| + |«3|, and 
Da = (d/dxi)ai(d/dx2)a7(d/dxz)a3. Here L2 denotes the space of square-integrable 
functions. 

Proposition Al.l. If V is a bounded function of compact support, the operator 
G0V is compact in Ä"1,_S(R3) for any 5 > 1/2. 

Proof. Because we are making the (unnecessary but simplifying) assumption that 
V has compact support in the lower half-space, we write GQV as GQX^\ where x is the 
function that is one on the support of V and zero everywhere else. We then follow the 
ideas of [Ag]: first we show that multiplication by V is a compact operator mapping Hl,~s 

into L2'3; then we show that the operator GoX 1S a bounded operator mapping L2'9 into 
H1'-3. Hence the product operator GQXV = GQV is a compact operator on H1'-3. 

Multiplication by V is a compact operator from Hl'~3 to L2,s under much more 
general conditions (see [S]). Here, however, we can simply rely on the Sobolev imbedding 
theorem [Ad, p. 144]. 
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To show that GQX is a bounded mapping from L2'a into H1' s, we follow the outline 
of the argument in [RS4]. We write ^ = GQX^I which, when Fourier transformed, reads 

l(tx) = -Ll /!fc(^(A-, A+)e-iA-(^+ya) + ett-l*«-»l)ite, W)dW>   for x3 < 0 
M,**)       2A_  | j-0fcT(A_)A+)e-iA_y3eiA+X3^y3)dy3) for X3 > 0 

(ALU) 
where h is chosen so that the support of V is in the region 3/3 > —h. 

Because the exponentials on the right side are decaying, from (Al.ll) we can draw 
the conclusion 

IÄ£,*3)| <  (1 +[^2)1/2 II^»-)11LI, (A1.12) 

where L1 refers to Ll(—h, 0). Similarly, if we differentiate <f>, we obtain 

\D^f>(t,x3)\<c\m,-)\\Ll (A1.13) 

for any \a\ < 1. 
Next we relate each side of (Al.13) to a weighted norm in the X3 variable. First, the 

L1 norm on the right side can be bounded above by 

j(l + |x3|
2)-a/2(l + \x3\

2y/2m,x3)\dx3 < C||^,.)||L>... (ALU) 

The left side of (Al.13), on the other hand, can be related to a weighted norm by 

ii^u, Olli».-. = /(i + ixsi2r*i^(e,*3)i2dxs < ii^Ke.oiiL- /a + M3
)-***. 
(Al.15) 

For s > 1/2, the rightmost integral of (Al.15) converges to a positive real number; thus 
we can rewrite (Al.15) as 

ll^tf, Olli»- < cllß^U, Olli- ■ (A1.16) 

Using (Al.14) and (Al.16) in (Al.13), we obtain 

\\DU>(Z,-)\\h.-' <c||l?(e,-)||i.... (-A1-17) 

Next we convert (Al.17), which involves only one-dimensional weighted norms, to a 
similar statement about three-dimensional weighted norms. We do this by integrating both 
sides with respect to xx and 22, and using the Plancherel theorem to obtain 

f \Da<f>(x)\2(l + \x3\2)-°dx < cj\j>(x)\2(l + \x3\
2)8dx. (AL18) 

QED 
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Because the medium in the lower half-space is dissipative, waves there must decay 
exponentially as they travel in the medium. We can see this as follows. 

Lemma Al.2. If V has compact support, then in any finite-thickness slice of the 
lower half-plane {x : x^ < X3 < xf < 0}, any solution u of (1.4) that is in Hl~s decays 
exponentially at infinity. 

Proof. We consider a rectangular region along the X\ axis outside the support of V, 
namely {x : x^ < a;i,0 < X2 < xtix3 < x3 < xt < 0}- m this region, we write u in a 
Fourier series 

u(x) = J2üi,p(xiylnX2/Ax2eipnX3/Ala, (A1.20) 
i,p 

where we have written Ax2 = x* — a;^ an<^ ^£3 = xt ~ x3 ■ Since u is not periodic in the 
X2 or £3 variables, this expression will not coincide with u outside the box, but this does 
not matter for the present purpose. 

Because u satisfies the unperturbed wave equation (1.4) in the box, the Fourier coef- 
ficient üi>p satisfies the ordinary differential equation 

&> - (ix;)2 - (£)2+fcV-+ikm-)üi'p=°'        {A1-21) 

whose solutions are linear combinations of exponentials that either grow or decay for large 
x\. Because u is in H1'-3, the coefficients of the growing exponentials must be zero. The 
solution u can therefore be written 

u(x) = J2ül,p(xT)exP (ixiJk*n2_+ikm- - {-^-f - (-^-)2\ilnXi/Ax2eipKXs/Ax3. 

(A1.22) 
To show that the right side decays exponentially in the x\ variable, we note that the 
imaginary part of the square root is bounded below by m_/2. A factor of e-"1-1!/4 can 

thus be pulled out of each term, and the remaining series converges. 
Because (1.4) is isotropic outside the support of V, any direction can be chosen as the 

x\ direction. 
QED 

Proposition Al.3. Suppose V is a bounded function of compact support, and 
assume m is strictly positive in the lower half-space. Then if E° is in H1'-3, (Al.9) has 
a unique solution in Hx~s for s > 1/2. Similarly, (Al.10b) has a unique solution in the 
same space. 

Proof. For (Al.10b), we check that the inhomogeneous term GQVGQ is in Hl~a for 
s > 1/2. The Green's function Go, being a fundamental solution of the Helmholtz equation, 
has no singularities worse than the l/\x — y\ singularity for x near y. This singularity, 
however, is square-integrable in three dimensions. The product VGQ is therefore in L2'3, 
so by Proposition Al.l, GQVGO is in Hl~3. 

By the Fredholm theorem, to show that (Al.9) and (Al.10b) each have unique solu- 
tions, we need to show that the homogeneous equation 

tf-(x) = JG0(x,y)V(y)iP(y)dy (A1.23) 
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has only the trivial solution. A solution to (Al.23), however, corresponds to a solution 
of (1.4) with no sources and no incoming wave. To show that such a solution must be 
identically zero, we use an energy identity, which we obtain by multiplying (1.4) by the 
complex conjugate E and integrating over a cylindrical region flp of radius p, whose top 
is a disk in the x$ = x$ plane and whose bottom is a disk in the plane x$ = —h. Here h is 
chosen so that the support of the perturbation V is contained between the planes x3 = — h 
and £3 = 0. After an application of the divergence theorem, we have 

/ (\VE\2-k2n2\E\2-ikm\E\2) = [    E^-. {AIM) 
Jnp Jan,    ou 

For E in (Al.24) we substitute a solution ip of (A1.23), written in the form 

*(*) = J^y JW(,x3)eix'M- 041-25) 

^Frorn (Al.6) we see that for x3 > 0, 

4>(t,x3) = A(OeiX+x* 

and for xz < —h, 

V(£,*3) = B(0e-iA-13 

for some coefficients A and B. We use these expansions in (A1.25), which is then sub- 
stituted into the integrals over the top and bottom of the cylinder on the right side of 
(Al.24). We then let p go to infinity; the integrals over the vertical sides of the cylinder 
go to zero as p goes to infinity by Lemma Al.2. Finally, in the integrals over the top and 
bottom, we perform the x' integration. The result is 

/   (|VVf - fc2n2M2 - ikmty\2) = i I\\A(0\2A+e-2ImA+*a+ + |£(0|2A-< -2ÄA- 

(A1.26) 
If tp is nonzero and k is positive, the left side of (Al.26) has negative imaginary part, 
whereas the imaginary part of the right side is nonnegative. This shows that ip is identically 
zero for k positive. 

QED 
If m were identically zero in some region in the lower half-space, the above argument 

does not rule out the possibility that ifi might be nonzero there. This could happen, for 
example, if k2n2 were equal to a constant that happened to be a Dirichlet eigenvalue for 
the region in which m is identically zero. In this case, there could exist a nonzero solution 
in that region with zero boundary values. This possibility can be ruled out by assuming 
smoothness of n2 and m, so that the unique continuation principle of [RS4] holds. 

Next we investigate the invertibility of the integral operators defined in (3.6). For 
this, we need to define the following subspaces of L2's and H3: 

L\a = Wk2 -\-\2f : (1 + I • |2)(s+1)/2/(-) € L2} 
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and 
Hi = {/:/€ X2,'4}. 

Proposition Al.4. If m is strictly positive in the lower half-space, then the integral 
operators T and To are both invertible operators from i7-1/2(R2) to H\' 

2(R2). 
Proof. The result for To is clear from expression (Al.6) with #3 = y$ = 0. 
To show that T is invertible, we write (following [N]) 

r = r0(i+r0-1(r-r0)), 

so that invertibility of T follows from invertibility of / + r^"1(r — To). The difference T-T0 

is a compact operator on H1'2 because it can be written in terms of the composition of 
the compact operator GoV with G (see Proposition Al.l). Since r^"1(r — To) is compact, 
invertibility of i" + IV1 (r - T0) follows from its injectivity, which in turn follows from the 
injectivity of V. 

To see that T is injective, we write u(x) = f _0 G(x,y')f(y')dy', where we assume 
u(x) = 0 for £3 = 0. The Lemma of section 3 shows that u satisfies (3.8) with zero 
boundary values; the argument of Proposition A2.2 shows that u must be identically zero 
in the lower half-space. We next multiply (Al.10a) by /, integrate with respect to y', and 
let 3/3 and £3 approach zero through negative values. We obtain 

u(x') - r0/(x') =  / Go((x', 0), z)V{z)u{z)dz, 

which, since u is identically zero, reduces to T0f = 0. The injectivity of r0, however, is 
clear from (Al.6). 

QED 

APPENDIX 2.'CONSTRUCTION OF THE OUTGOING SOLUTION TO THE BOUND- 
ARY VALUE PROBLEM 

In this appendix, we will construct an outgoing solution to the boundary value problem 
with the help of the outgoing Green's function that is zero on the boundary x3 = 0. 
This Green's function is then used to convert the boundary value problem to an integral 
equation, which will be shown to have a unique solution. 

The outgoing Dirichlet Green's function. In the lower half-space Ri, the 
Green's function g(x, y) = g{xi —yi, x2 — 2/2, ^3,2/3) satisfies an outgoing radiation condition 
and the boundary value problem 

(V2 + k2n2_ + ikm-)g(x, y) = -6(x - y), (42.1) 

<K*,y)l*3=o = 0. (A2.2) 

This Green's function can be constructed by two methods. The first method is that 
used in Appendix 1; in particular, equation (A2.1) can be Fourier transformed in the ia 

and X2 variables, which yields 

(d2
3 +Al)^,x3,y3) = -8{xz-y3), (42.3) 
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where we have written XL = —1£|2 + k2n2_ + ikm.-. For y3 < x3 < 0, the general solution 
of (A2.3) is 

9+U,x3, y3) = A+ (£)eiA- x*+B+U)e-iX-X3; (A2A) 

for X3 < t/3 < 0, it is 

$~tf,*3,ys) = A"(0eiA-X3 + B-(0e~iX-Xa. (42.5) 

The condition that g be downgoing as £3 —► —00 implies that A~ = 0; the boundary 
condition (A2.2) implies that A+ + B+ = 0; g is continuous at X3 = j/3 but the derivative 
dg/dx3 jumps by 1. Solving for the As and Bs, we obtain 

g((,x3,y3) = JL-(ciA-l*»-»l - c-
iA-(*»+i")). (42.6) 

Written in this form, it is clear that when A_ has positive imaginary part, g(£,x3,y3) 
decays exponentially as x3 —*• —00. Moreover, for fixed x3 ^ y3, g decays exponentially as 
|£| —> 00. This Fourier transformed Green's function can also be written as 

A_  ( e  ,A-l3sinA_j/3,    for x3 < y3 < 0. 

The Green's function itself is then 

9{x,y) ^J^f Jei{X'~y,)'^i^3,y3)di. (42.8) 

This same Green's function can also be constructed by the method of images. For 
a point y = (1/1,1/2,2/3) in the lower half-space, the corresponding image point is y = 
(j/i) 2/2, —2/3)- Then we can write the Green's function as 

c?(x, y) = — ( : j :    . (A2.9) 
4TTV \x-y\ \x-y\ ) 

It is clear from this expression that g decays exponentially at infinity. 
To see that these two representations are the same, we recall that the free space 

Green's function can be Fourier transformed as 

= p^/lcjfq^«- {A2M) 
47r|x| 

In this Fourier transform integral, we can do the (3 integral first; it is 

S/G-P-KP)*-    ' (A2n) 

19 



where we have written £ = (£1, £2). This one-dimensional integral can be done by contour 
integration; it is equal to 

iexp(i>3|\/72-iei2) (AO^\ 

*y/F=W     • (      } 

To relate (A2.12) to (A2.6), we let 7 = {k2n2_ + ikmJ)1!2; we then substitute x3 - y3 for 
x3 in (A2.12) and subtract the resulting expression from the one obtained by substituting 
£3 - 2/3 for x3. 

Construction of the outgoing solution to the boundary value problem. We 
construct the outgoing solution to the boundary value problem as the solution to an integral 
equation. This integral equation is obtained by multiplying (2.4) by g and (A2.1) by 
u, subtracting the resulting equations, and applying Green's theorem. After using the 
boundary conditions at infinity and (2.5), we obtain 

u(x) = -[      g(x,y)V(y)u(y)dy - [      /(y)2£J£iÖdy; (A2.13) 
Jy3<0 Jy3=0 °yz 

where we have written V(y) = k2(n2(y) — n2_) + ik(m(y) — m_). We can write this 
equation in more compact notation by writing the first term on the right-hand side in 
operator notation as gVu. This equation can be used to define u. 

First, we show that a solution u of (A2.13) has the desired properties. It is clearly 
outgoing. To see that u satisfies the correct boundary condition, we evaluate (A2.13) at 
x3 = 0. From (A2.2) or (A2.7) we see that the Green's function is zero when x3 = 0. 
Thus the entire contribution to u comes from the second term on the right side of (A2.13). 
Again from (A2.7) and (A2.8) we see that the normal derivative of g on the surface y3 == 0 
is 

dg(x,y) 

dy3 
_   = (2^ / '*x'-y'H'-iX-"dt, (A2.U) 

QED 

X3- 

which, as x3 —> 0, becomes a negative delta function supported at x' = y'. 

Next we show that equation (A2.13) has a unique solution in Hl. 

Proposition A2.1. If V is a bounded function of compact support, the operator gV 
is compact in Hl(T\?_). 

Proof. We follow the ideas of [Ag]: first we show that multiplication by V is a 
compact operator mapping H1 into L2; then we show that the operator g is a bounded 
operator mapping L2 into H1. Hence the product operator gV is a compact operator on 
H1. 

To see that multiplication by V is a compact mapping from H1 into L2, we simply 
invoke the Sobolev imbedding theorem [Ad]. 

To show that the operator g maps L2 into H1, we begin by writing <j> = gip. The two- 
dimensional Fourier transform of this is <$> — gxj). From (A2.6) we see that g is bounded 
and decays for large |f | like l/|f |; this shows immediately (with the help of the Plancherel 
theorem) that |M|La(R8) < c||V>||L2(R3 } and ||^/öx,||L2(R3_} < c^W^^l) for i = 1,2. 
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To show the same thing for the £3 derivative, we write g = i(2\)  1(hi — /12), where 
h\{(,xz,yz) = exp(iA_|x3 - y3|) and h2(£,x3,y3) = exp(-iA_(x3 + y3)). With this nota- 

A A A 

tion, we have <j> = </>i + <f>2, where 

*      f° 
^1^'a!8) = 2ÄT7     M£,*3,2/3)^,2/3)^3 (A2.15) 

and 
i      /*° - ■ 

^'X3) = 2Äl/    M&ss.yaM&ysMva. (A2.16) 

Differentiation of (fo with respect to x3 gives 

since both exponentials in this expression are decaying, we have 

ll^^ll^(R.)^cll^-)lli2(R_). 

Using the Plancherel theorem and integrating over xi and xi then shows that 

||^2/9x3||L2(R3 } < c||^||i;a(R»). 

Differentiation of <f>\ with respect to x3 gives 

^1(^x3)       i 
dx3 

= -J_    sgn(x3 - y3)e,x-\x*-y*\tl>(Z,y3)dy3 (A2.18) 

We extend V> to the whole real line by defining it to be zero for y3 > 0. This allows us 
to extend the region of integration on the right side of (A2.18) to the whole real line, so 
that the right side becomes a convolution. We then Fourier transform in the x3 variable, 
obtaining 

where $ and ^ are the one-dimensional Fourier transforms of d<j>i/dx3 and V>, respectively, 
and where we have have used a = a(£) and ß = /?(£) for the respective real and imaginary 
parts of A_. Taking L2 norms of both sides of (A2.19), in the 77 variable, we see that 
ll$(£> ')IU2(R_) ^ cll*(f > ')IIL2

(R_)- Using the Plancherel theorem and integrating over xi 
and X2 then shows that 

ll^-|lL2(Ri) < CUWLHRD- (A2.20) 

QED 
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Proposition A2.2. If m is strictly positive, equation (A2.13) has a unique solution 
inZTHRl). 

Proof. The Fredholm alternative guarantees that (A2.13) has a unique solution 
provided that the corresponding homogeneous equation has only the zero solution. A 
solution of the homogeneous equation is also a solution u of (2.4) and (2.5) with / = 0. To 
show that such a u must be identically zero, we use an energy argument. The procedure 
for obtaining this energy identity is to multiply (2.4) by the complex conjugate ü and 
integrate over Ch, a cylindrical region with radius |x'| = h2 and extending from x3 = 0 to 
x3 — — h. After using Green's theorem, we obtain 

/  (\Vu\2 - q\u\2) = f    up-, . (,42.21) 
Jch Jach   ou 

where v is the outward unit normal to Ch- 
The right side of (A2.21) has three parts, corresponding to the parts of the boundary 

of Ch- The integral over the circle on the plane x3 = 0 contributes nothing because u is 
zero there. Similarly, the integral over the circle on the plane £3 = — h goes to zero in the 
limit h —» 00 because of the radiation condition in the lower half-plane. The integral over 
the side of the cylinder also vanishes because of the large-/) asymptotics of u. Thus the 
right side of (A2.21) vanishes as h —»• 00. Thus, in the limit, we have 

/       (|Vu|2 - q\u\2)dx = 0. (A2.22) 
Jx3<0 

Both the real and imaginary parts of the left side of (A2.22) must be zero; since for k 
positive, q has positive imaginary part km, \u\ must be zero. 

QED 

As discussed in Appendix 1, the hypothesis that m be strictly positive can be replaced 
by smoothness assumptions on n2 and m. 

APPENDIX 3. PROPERTIES OF THE SCATTERING OPERATOR 
In Appendix 1 we saw that an incident field in i71,~'s(R3), s > 1/2, gives rise to a 

scattered field in the same space. Because these spaces are weighted only in the x3 variable, 
the restriction of a function in such a space to any horizontal (i.e., fixed x3) plane is in 
i71/2(R2) [Ad]. The Fourier transform of this space is 

x2
/2(R

2) = HO : (i + Kl2)1/4" a2(R2)}. 

Thus the operator S maps L\/2(R
2) to itself. 

With this information, equation (3.3) can be interpreted as follows. Since both A and 
multiplication by i\+ are maps from L\ ,2 to L2_x,2, each side of equation (3.3) is a map 
on L2 ,2 followed by a map from L2 ,2 to L2_1/2. 

Theorem. The projection PSP of the scattering operator onto {/ : (jfc2 - |f |2)1/4/ G 
-k2(l£l < k) has norm less than one. 
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Proof. We use the energy identity (Al.24) applied to a region that in the limit 
becomes the entire lower half-space. In the right side we use expression (Al.25), where, 
on the surface X3 = 0, 

&e,o) = (5/)(o+/(o. • w.i) 
The energy identity thus becomes 

(2TT)
2
 /     (|V^|2-Jfc2n2|V|2 - ikm\ip\2) = 

i I       \{\SM)? ~ |/(0la) + 2i/m(/5/)l y/V=Wdt-    (A3.2) 

[(|5/(oi2 - i/(Oi2)+2tTm(/5/)] VieF^de. 

'I3<0 

^Ifl 

Here we assume that / is zero for |f | > k. Thus the right side of (A3.2) reduces to 

«" /       h\Sf(t)\2 - l/(0la)+ 2tJm(/5/)] Vk^Wd(- I       ISfiOfVW^dt. 
(^3.3) 

The imaginary part of the expression is /|{|<fc(|'S'/(OI2 _ l/(0l2)^> which must be negative 
since the left side of (A3.2) is negative. 

QED 
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Imaging in Optical Turbid Media with Diffusive Waves of Light 

Arjun G. Yodh 
Department of Physics and Astronomy 
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Philadelphia, PA 19104-6396 

Visually opaque media are ubiquitous in nature. While some materials are 
opaque because they strongly absorb visible light, others such as tissue may 
be opaque because photons traveling within these media are predominantly 
scattered rather than absorbed. A vanishingly small number of photons travel 
straight through such substances: instead, light is transported through these 
materials in a process similar to heat diffusion. In the biophysics and medi- 
cal communities, diffusing photons are now used to view body function and 
structure [1]. This is a result of a spectral window within tissues in the 700- 
900 nm region, in which photon transport is dominated by scattering rather 
than absorption. Thus, to a very good approximation, near infrared photons 
diffuse through human tissues. The use of light to create images of turbid 
media is an attractive idea whose roots can be traced to diaphonagraphy [2]. 
There have been many developments since then that make the possibilities of 
light-based images of turbid media eminently realistic at the present time [1]. 
On the technological side, the development of small and efficient light sources, 
detectors, and control electronics, along with the continual improvements in 
computational capabilities, make possible rapid, repeatable, and sensitive 
noninvasive optical instruments. On the fundamental side, as a result of 
advances in our understanding of photon and correlation transport, partic- 
ularly with regard to their connection to material properties, we are now 
able to consider these problems with unprecedented theoretical sophistica- 
tion and clarity. Light offers new image contrast specificities that distinguish 
it from other techniques such as X-Ray, magnetic resonance, thermography, 
and sound. Spectroscopic information is available as a result of the intrin- 
sic absorption's of the materials probed, or as a result of the absorption of 
contrast agents (chemicals) that may be introduced externally into the sys- 
tem. Spectroscopic and lifetime information from fiuorophores (intrinsic or 
extrinsic) can provide sensitive information about local environments in the 
turbid media. Furthermore recent work [3] suggests that information about 



the higher order diffusing light field correlation functions such its temporal 
correlations, appear capable of providing maps of motions within turbid me- 
dia. In this contribution I will discuss results from my laboratory wherein we 
use diffusing light to probe turbid media. The elementary disturbances we 
use are generated by point sources of light, whose amplitudes are modulated 
sinusoidally at angular frequency w. Microscopically, individual photons un- 
dergo a random walk within the medium, but collectively, a spherical wave 
of photon density is produced and propagates outward from the source. We 
refer to these waves as diffuse photon density waves (DPDWUs) or diffusive 
waves. There are a variety of ways to generate diffuse photon-density-waves 
[4-8]. Typically amplitude modulated light is delivered into the turbid sam- 
ple through a source fiber optic cable, and the scattered photons are collected 
through a detector fiber optic cable. The source radiation is derived from 
a diode laser, LED, or more complex laser system. The oscillating portion 
of the detected diffuse light-energy-density is separated from all other light 
by standard phase-sensitive methods. Both the phase and amplitude of the 
diffuse photon-density-wave can be determined in this way. Although these 
waves are overdamped, it is feasible to utilize them as probes of biological 
samples whose extent is of the order of 10 cm, or about 100 transport mean 
free pathlengths. The measurements will necessarily be in the near field of 
the diffuse photon-density-wave, but analogies from optics are often useful as 
a guide to understand the variation of the amplitude and phase of the diffuse 
photon-density-waves brought about by absorption and scattering changes 
within the sample. For example, the diffusive waves have been observed to 
exhibit other properties one normally associates with conventional electro- 
magnetic radiation such as refraction [6], diffraction [7,9], interference [5,7], 
and dispersion [8]. Contrast in these cases is brought about by variations in 
absorption and scattering which combine to produce effective dielectric con- 
stants for the diffusive waves. Our earliest experiments we aimed to elucidate 
the physical properties of these disturbances, demonstrating the refraction 
[6], diffraction [7,9], and fluorescent reemission [7] of these waves. The focus 
of the present talk however, will be on research we have done more recently 
that is more oriented towards the application of these probes for imaging 
purposes. In particular we will describe experiments that demonstrate the 
tomographic reconstruction of absorptive and scattering heterogneieties in 
tissue phantoms [10]. We will indicate how to reconstruct lifetime and con- 



centration of fiuorophores in tissues using secondary, reradiated DPDWUs 
[11], and we will discuss our experiments with diffusing temporal correlation 
in heterogeneous fluctuating media [3]. Finally we explicitly consider the 
scattering of diffusive waves from small spherical heterogneities (absorbing, 
scattering, and fluorescing [12]), analyzing the limits of detection and char- 
acterization with diffusive waves [13] in real systems. 
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Abstract 

By using the extinction theorem for multiply connected scattering domains[l], we perform 

numerical calculations on the scattering of light and other electromagnetic waves by a 2—D 

system consisting of a cylinder behind a very rough random dielectric surface. Recently, 

the above configuration is receiving increasing interest due to the possibility of detecting 

hidden bodies behind rough surfaces[2, 3, 4]. 

It is shown that the presence of a small body buried behind a random surface dra- 

matically enhances the backscattering peak effect, even for surfaces that do not exhibit a 

backscattering peak in the absence of the cylinder. In order for this to occur, the surface 

must be very rough, and the dielectric contrast between the body and the medium in 

which it is inmersed has to be appreciable. 

Results of numerical calculations on the dependence of the backscattering peak on the 

cylinder-surface distance are shown. Also, the influence of others parameters such as the 

incident polarization, cylinder size, and angle of incidence is discussed. 
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We present in this paper the optical scattering of a rough semi-transparent heterogeneous 
medium. The goal of this work is to study the behavior of a paint deposited on an absorbing 
or reflective structure and to evaluate, in the scattering diagram, the contribution of the 
roughness. 

To calculate the scattered field we use a phenomenological equation of radiation transfer 
solved with a discrete ordinate method which allows us to model the propagation of both the 
collimated component (coherent) and the diffuse component (incoherent) of the light. We 
take into account the scattering radiation from the rough surface by a boundary condition. 
The scattered and transmitted fields are calculated with a numerical simulation based on a 
Rayleigh hypothesis and the extinction theorem (the iterative series solutions introduced by 
J. J. Greffet: DIFF3D code). 

We shall present the coupling method, the first results, and an analytical study that fits 
the relevant parameters of the physical problem. 
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If, in the scattering of electromagnetic waves from a one-dimensional, randomly rough 

surface, the plane of incidence is not perpendicular to the generators of the surface, the diffuse 

scattering of the electromagnetic waves that occurs in this case is called conical scattering, 

because the scattered radiation appears on the surface of a cone, rather than in a plane, 

due to the translational invariance of the scattering surface parallel to its generators. In 

this work we have determined formally the elements of the Stokes matrix describing such 

scattering in terms of the second-order moments of the scattered field for the scattering 

of a Guassian beam from a one-dimensional perfectly conducting random surface, defined 

by the equation x3 = ((^I). The surface profile function C{xi) is assumed to be a single- 

valued function of Xi that constitutes a zero-mean, stationary, Gaussian random process, 

characterized by a Gaussian surface height autocorrelation function. The region x3 > ((xj) 

is vacuum, while the region x3 < C(xi) is a perfect conductor. In obtaining expressions 

for the elements of the Stokes matrix we have used the geometry adopted by Luna and 

Mendez [1] in their experimental study of conical scattering. In this geometry the plane 

of incidence is defined by the wave vector of the incident electromagnetic field and the 

unit vector parallel to the generators of the surface. The plane of scattering is defined in 

an analogous fashion.   This contrasts with the usual definitions of these planes, viz.  that 



they are defined by the wave vectors of the incident and scattered electromagnetic fields 

and the normal to the mean scattering plane, respectively. If we write the components of 

the electric and magnetic fields in the vacuum region in the forms E>(x;t) = Ea(xi,x3\uj) 

x exp(ik2x2—iut) and H>(x;t) = Ha(xi, x3\u>) exp(ik2x2 —iut), respectively, the components 

parallel to the generators of the surface, E2(xi, £3\u>) and H2(xi, x3\u>), satisfy the Helmholtz 

equations 

d2        d2       '•■* 
+ ^ + I ^r - k\ 

E2(x1,x3)   I _ Q 

px\     dx3     \ c
2 

The remaining four field components are all obtained by differentiating i?2(xi,X3|a;) and 

H2(xi,x3\u)) . By applying Green's second integral identity to the vacuum region X3 > ((xi), 

we obtain the inhomogeneous integral equations satisfied by the values of {—(,'[x\){d/dx\) + 

(d/dx3)) E2(xi,x3\u) and H2(xi,x3\u) on the random surface, in terms of which all com- 

ponents of the scattered electromagnetic field can be expressed. These equations are solved 

numerically for each of 1000 realizations of the surface profile function [2], and the elements 

of the Stokes matrix are averaged over the results obtained for these realizations. For the 

scattering geometry assumed in the present work, we obtain the same nonzero elements of 

the Stokes matrix as in an earlier determination of these elements in the case that the plane 

of incidence was assumed to be perpendicular to the generators of a one-dimensional ran- 

dom surface [3], although, of course, the expressions for the elements are different in the 

two cases. We have calculated the nonzero elements of the Stokes matrix and have plotted 

the contributions to them from the coherent (specular) and incoherent (diffuse) components 

of the scattered light. The results of this study provide complete information about the 

scattering properties of one-dimensional randomly rough surfaces. 
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